高台县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
高台县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
高台县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
高台县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
高台县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高台县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知正项数列an的前n项和为Sn,且2Sn=an+,则S2015的值是( )ABC2015D2 已知平面=l,m是内不同于l的直线,那么下列命题中错误 的是()A若m,则mlB若ml,则mC若m,则mlD若ml,则m3 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 4 圆上的点到直线的距离最大值是( )A B C D5 与463终边相同的角可以表示为(kZ)( )Ak360+463Bk360+103Ck360+257Dk3602576 在极坐标系中,圆的圆心的极坐标系是( )。ABCD7 xR,x22x+30的否定是( )A不存在xR,使x22x+30BxR,x22x+30CxR,x22x+30DxR,x22x+308 在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m9 已知抛物线x2=2y的一条弦AB的中点坐标为(1,5),则这条弦AB所在的直线方程是( )Ay=x4By=2x3Cy=x6Dy=3x210设函数F(x)=是定义在R上的函数,其中f(x)的导函数为f(x),满足f(x)f(x)对于xR恒成立,则( )Af(2)e2f(0),fBf(2)e2f(0),fCf(2)e2f(0),fDf(2)e2f(0),f11已知空间四边形,、分别是、的中点,且,则( )A B C D12如图框内的输出结果是( )A2401B2500C2601D2704二、填空题13已知、分别是三内角的对应的三边,若,则的取值范围是_【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想14椭圆+=1上的点到直线l:x2y12=0的最大距离为15i是虚数单位,若复数(12i)(a+i)是纯虚数,则实数a的值为16下列命题:集合的子集个数有16个;定义在上的奇函数必满足;既不是奇函数又不是偶函数;,从集合到集合的对应关系是映射;在定义域上是减函数其中真命题的序号是 17()0+(2)3 =18如图:直三棱柱ABCABC的体积为V,点P、Q分别在侧棱AA和CC上,AP=CQ,则四棱锥BAPQC的体积为三、解答题19若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值20(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交圆于两点,于,求的长.21设a,b互为共轭复数,且(a+b)23abi=412i求a,b 的值22(本题满分15分)如图是圆的直径,是弧上一点,垂直圆所在平面,分别为,的中点.(1)求证:平面;(2)若,圆的半径为,求与平面所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力23某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率24(本小题满分10分)已知曲线,直线(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.高台县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:2Sn=an+,解得a1=1当n=2时,2(1+a2)=,化为=0,又a20,解得,同理可得猜想验证:2Sn=+=, =,因此满足2Sn=an+,Sn=S2015=故选:D【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题2 【答案】D【解析】【分析】由题设条件,平面=l,m是内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D3 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础4 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 15 【答案】C【解析】解:与463终边相同的角可以表示为:k360463,(kZ)即:k360+257,(kZ)故选C【点评】本题考查终边相同的角,是基础题6 【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。7 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,xR,x22x+30的否定是:xR,x22x+30故选:C8 【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题9 【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=2,x12=2y1,x22=2y2两式相减可得,(x1+x2)(x1x2)=2(y1y2)直线AB的斜率k=1,弦AB所在的直线方程是y+5=x+1,即y=x4故选A,10【答案】B【解析】解:F(x)=,函数的导数F(x)=,f(x)f(x),F(x)0,即函数F(x)是减函数,则F(0)F(2),F(0)Fe2f(0),f,故选:B11【答案】A【解析】试题分析:取的中点,连接,根据三角形中两边之和大于第三边,两边之差小于第三边,所以,故选A考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题12【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+99=2500,故选:B【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题二、填空题13【答案】 【解析】14【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()=1时,d取得最大值为4,故答案为:415【答案】2 【解析】解:由(12i)(a+i)=(a+2)+(12a)i为纯虚数,得,解得:a=2故答案为:216【答案】【解析】试题分析:子集的个数是,故正确.根据奇函数的定义知正确.对于为偶函数,故错误.对于没有对应,故不是映射.对于减区间要分成两段,故错误.考点:子集,函数的奇偶性与单调性【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.117【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:18【答案】V【解析】【分析】四棱锥BAPQC的体积,底面面积是侧面ACCA的一半,B到侧面的距离是常数,求解即可【解答】解:由于四棱锥BAPQC的底面面积是侧面ACCA的一半,不妨把P移到A,Q移到C,所求四棱锥BAPQC的体积,转化为三棱锥AABC体积,就是:故答案为:三、解答题19【答案】 【解析】解:由题意可得:当a1时,函数f(x)在区间1,2上单调递增,f(2)f(1)=a2a=a,解得a=0(舍去),或a=当 0a1时,函数f(x)在区间1,2上单调递减,f(1)f(2)=aa2=,解得a=0(舍去),或a=故a的值为或【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题20【答案】(1);(2).【解析】试题分析:(1)由切线的性质可知,由相似三角形性质知,可得;(2)由切割线定理可得,求出,再由,求出的值. 1试题解析:(1)因为是圆的切线,是圆的直径,所以,所以,设,又因为,所以,所以,解得.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.21【答案】 【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=xyi,a+b=2x,ab=x2+y2,所以4x23(x2+y2)i=412i,所以,解得,所以a=1+i,b=1i;或a=1i,b=1+i;或a=1+i,b=1i;或a=1i,b=1+i【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键22【答案】(1)详见解析;(2).【解析】(1),分别为,的中点,2分为圆的直径,4分又圆,6分,又,;7分(2)设点平面的距离为,由得,解得,12分 设与平面所成角为,则.15分23【答案】 【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为年龄大于50岁的约有(人)(3)抽取节能意识强的5人中,年龄在20至50岁的(人),年龄大于50岁的51=4人,记这5人分别为a,B1,B2,B3,B4从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)故所求概率为24【答案】(1),;(2),.【解析】试题分析:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论