革吉县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
革吉县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
革吉县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
革吉县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
革吉县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

革吉县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D92 设a,bR且a+b=3,b0,则当+取得最小值时,实数a的值是( )ABC或D33 若某算法框图如图所示,则输出的结果为( )A7B15C31D634 已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD5 三个数a=0.52,b=log20.5,c=20.5之间的大小关系是( )AbacBacbCabcDbca6 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种7 数列1,3,6,10,的一个通项公式是( )A B C D8 设、是两个不同的平面,l、m为两条不同的直线,命题p:若平面,l,m,则lm;命题q:l,ml,m,则,则下列命题为真命题的是( )Ap或qBp且qCp或qDp且q9 下列函数中,定义域是且为增函数的是( )A. B. C. D.10在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D211已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,712已知a=5,b=log2,c=log5,则( )AbcaBabcCacbDbac二、填空题13已知随机变量N(2,2),若P(4)=0.4,则P(0)=14在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1若C=,则=15在(2x+)6的二项式中,常数项等于(结果用数值表示)16某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .17若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是18设函数则_;若,则的大小关系是_三、解答题19设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1=a1,b2=2,q=d,S10=100(1)求数列an,bn的通项公式(2)当d1时,记cn=,求数列cn的前n项和Tn20已知椭圆C1: +x2=1(a1)与抛物线C:x2=4y有相同焦点F1()求椭圆C1的标准方程;()已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当OBC面积最大时,求直线l的方程21【无锡市2018届高三上期中基础性检测】已知函数(1)当时,求的单调区间;(2)令,区间,为自然对数的底数。()若函数在区间上有两个极值,求实数的取值范围;()设函数在区间上的两个极值分别为和,求证:.22(本小题满分12分)已知分别是椭圆:的两个焦点,且,点在该椭圆上(1)求椭圆的方程;(2)设直线与以原点为圆心,为半径的圆上相切于第一象限,切点为,且直线与椭圆交于两点,问是否为定值?如果是,求出定值,如不是,说明理由23已知、是三个平面,且,且求证:、三线共点24如图,在三棱锥 中,分别是的中点,且.(1)证明: ;(2)证明:平面 平面 .革吉县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B2 【答案】C【解析】解:a+b=3,b0,b=3a0,a3,且a0当0a3时, +=+=f(a),f(a)=+=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值当a0时, +=()=(+)=f(a),f(a)=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值综上可得:当a=或时, +取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题3 【答案】 D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A5,B=3,A=2满足条件A5,B=7,A=3满足条件A5,B=15,A=4满足条件A5,B=31,A=5满足条件A5,B=63,A=6不满足条件A5,退出循环,输出B的值为63故选:D【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题4 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题5 【答案】A【解析】解:a=0.52=0.25,b=log20.5log21=0,c=20.520=1,bac故选:A【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用6 【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法7 【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式8 【答案】 C【解析】解:在长方体ABCDA1B1C1D1中命题p:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足,l,m,而m与l异面,故命题p不正确;p正确;命题q:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足l,ml,m,而,故命题q不正确;q正确;故选C【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力9 【答案】B 【解析】试题分析:对于A,为增函数,为减函数,故为减函数,对于B,故为增函数,对于C,函数定义域为,不为,对于D,函数为偶函数,在上单调递减,在上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.10【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题11【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础12【答案】C【解析】解:a=51,b=log2log5=c0,acb故选:C二、填空题13【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题14【答案】= 【解析】解:在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1,sinAsinB+sinBsinC=2sin2B再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列C=,由a,b,c成等差数列可得c=2ba,由余弦定理可得 (2ba)2=a2+b22abcosC=a2+b2+ab化简可得 5ab=3b2, =故答案为:【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题15【答案】240 【解析】解:由(2x+)6,得=由63r=0,得r=2常数项等于故答案为:24016【答案】【解析】考点:分层抽样方法17【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题18【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。故答案为:,三、解答题19【答案】 【解析】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n1,bn=2n1;当时,an=(2n+79),bn=9;(2)当d1时,由(1)知an=2n1,bn=2n1,cn=,Tn=1+3+5+7+9+(2n1),Tn=1+3+5+7+(2n3)+(2n1),Tn=2+(2n1)=3,Tn=620【答案】 【解析】解:()抛物线x2=4y的焦点为F1(0,1),c=1,又b2=1,椭圆方程为: +x2=1 ()F2(0,1),由已知可知直线l1的斜率必存在,设直线l1:y=kx1由消去y并化简得x24kx+4=0直线l1与抛物线C2相切于点A=(4k)244=0,得k=1切点A在第一象限k=1ll1设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m22=0,=(2m)212(m22)0,解得设B(x1,y1),C(x2,y2),则, 又直线l交y轴于D(0,m)=当,即时,所以,所求直线l的方程为【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想21【答案】(1)增区间,减区间,(2)详见解析【解析】试题分析:(1)求导写出单调区间;(2)()函数在区间D上有两个极值,等价于在上有两个不同的零点,令,得,通过求导分析得的范围为;(),得,由分式恒等变换得,得,要证明,只需证,即证,令,通过求导得到恒成立,得证。试题解析:(2)()因为,所以,若函数在区间D上有两个极值,等价于在上有两个不同的零点,令,得,设,令大于00小于00增减所以的范围为()由()知,若函数在区间D上有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论