已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
邹平县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD2 数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D13 在曲线y=x2上切线倾斜角为的点是( )A(0,0)B(2,4)C(,)D(,)4 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,则的解析式为( )A BC D【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.5 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD6 已知函数f(x)=,则的值为( )ABC2D37 满足下列条件的函数中,为偶函数的是( )A. B. C. D.【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.8 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141019 在中,那么一定是( )A锐角三角形 B直角三角形 C等腰三角形 D等腰三角形或直角三角形10不等式x22x+30的解集为( )Ax|x3或x1Bx|1x3Cx|3x1Dx|x3或x111在等差数列中,已知,则( )A12 B16 C20 D2412已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )A B C或 D或二、填空题13设函数f(x)=若ff(a),则a的取值范围是14定义:x(xR)表示不超过x的最大整数例如1.5=1,0.5=1给出下列结论:函数y=sinx是奇函数;函数y=sinx是周期为2的周期函数;函数y=sinxcosx不存在零点;函数y=sinx+cosx的值域是2,1,0,1其中正确的是(填上所有正确命题的编号)15在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形16已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=17已知一个算法,其流程图如图,则输出结果是18设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为三、解答题19已知z是复数,若z+2i为实数(i为虚数单位),且z4为纯虚数(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围20已知函数f(x)=|x5|+|x3|()求函数f(x)的最小值m;()若正实数a,b足+=,求证: +m 21已知函数f(x)=sin(x+)+1(0,)的最小正周期为,图象过点P(0,1)()求函数f(x)的解析式;()设函数 g(x)=f(x)+cos2x1,将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值22设集合.(1)若,求实数的值;(2),求实数的取值范围.111123已知集合A=x|x1,或x2,B=x|2p1xp+3(1)若p=,求AB;(2)若AB=B,求实数p的取值范围24(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、 构成等差数列 (I)求椭圆的方程; (II)设经过的直线与曲线交于两点,若,求直线的方程邹平县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题2 【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D3 【答案】D【解析】解:y=2x,设切点为(a,a2)y=2a,得切线的斜率为2a,所以2a=tan45=1,a=,在曲线y=x2上切线倾斜角为的点是(,)故选D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题4 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图象,再将的图象向上平移3个单位得到函数的图象,因此 .5 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题6 【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A7 【答案】D.【解析】8 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题9 【答案】D【解析】试题分析:在中,化简得,解得,即,所以或,即或,所以三角形为等腰三角形或直角三角形,故选D考点:三角形形状的判定【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试题的一个难点,属于中档试题10【答案】D【解析】解:不等式x22x+30,变形为:x2+2x30,因式分解得:(x1)(x+3)0,可化为:或,解得:x3或x1,则原不等式的解集为x|x3或x1故选D11【答案】B【解析】试题分析:由等差数列的性质可知,.考点:等差数列的性质.12【答案】【解析】试题分析:程序是分段函数 ,当时,解得,当时,解得,所以输入的是或,故选D.考点:1.分段函数;2.程序框图.11111二、填空题13【答案】或a=1 【解析】解:当时,由,解得:,所以;当,f(a)=2(1a),02(1a)1,若,则,分析可得a=1若,即,因为212(1a)=4a2,由,得:综上得:或a=1故答案为:或a=1【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题14【答案】 【解析】解:函数y=sinx是非奇非偶函数;函数y=sinx的周期与y=sinx的周期相同,故是周期为2的周期函数;函数y=sinx的取值是1,0,1,故y=sinxcosx不存在零点;函数数y=sinx、y=cosx的取值是1,0,1,故y=sinx+cosx的值域是2,1,0,1故答案为:【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键15【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:16【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出17【答案】5 【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a24a+1,a=3不满足条件a24a+1,a=4不满足条件a24a+1,a=5满足条件a24a+1,退出循环,输出a的值为5故答案为:5【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查18【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键三、解答题19【答案】 【解析】解:(1)设z=x+yi(x,yR)由z+2i=x+(y+2)i为实数,得y+2=0,即y=2由z4=(x4)+yi为纯虚数,得x=4z=42i(2)(z+mi)2=(m2+4m+12)+8(m2)i,根据条件,可知 解得2m2,实数m的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题20【答案】 【解析】()解:f(x)=|x5|+|x3|x5+3x|=2,(2分)当且仅当x3,5时取最小值2,(3分)m=2(4分)()证明:( +)()2=3,(+)()2,+2(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想21【答案】 【解析】解:()函数f(x)=sin(x+)+1(0,)的最小正周期为,=2,又由函数f(x)的图象过点P(0,1),sin=0,=0,函数f(x)=sin2x+1;()函数 g(x)=f(x)+cos2x1=sin2x+cos2x=sin(2x+),将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin2(x)+=sin(2x),x(0,m),2x(,2m),又由h(x)在区间(0,m)内是单调函数,2m,即m,即实数m的最大值为【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键22【答案】(1)或;(2)【解析】(2) . 无实根, 解得; 中只含有一个元素,仅有一个实根, 故舍去; 中只含有两个元素,使 两个实根为和, 需要满足方程组无根,故舍去, 综上所述.1111.Com考点:集合的运算及其应用.23【答案】 【解析】解:(1)当p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪科版九年级历史上册月考试卷
- 2024年粤教新版九年级数学下册月考试卷
- 2024年华师大版选择性必修3物理下册阶段测试试卷
- 2024-2025学年广西河池地区三上数学期末调研模拟试题含解析
- 创新教育视角下的小学生自然科学动手实践研究
- 企业如何构建高效能的服务支持团队
- 商业教育中的运动安全与设施建设探讨
- 2025中国联通龙游分公司招聘6人(浙江)高频重点提升(共500题)附带答案详解
- 2025中国社会科学院世界历史研究所第一批科研人员公开招聘7人高频重点提升(共500题)附带答案详解
- 2025中储粮集团财务限公司人员招聘高频重点提升(共500题)附带答案详解
- 《会计工作经历证明模板》
- 北京林业大学《计算机网络安全》2023-2024学年期末试卷
- 2025届重庆康德卷生物高一上期末学业质量监测试题含解析
- 初中七年级数学运算能力培养策略(课件)
- 2024-2025学年九年级化学人教版上册检测试卷(1-4单元)
- 北京市东城区2023-2024学年高二上学期期末考试+英语 含答案
- 服装厂安全教育培训规章制度
- 车辆修理厂自查自纠整改方案及总结报告
- 2024版成人脑室外引流护理TCNAS 42─20241
- 湖北省八校2025届高二生物第一学期期末质量检测模拟试题含解析
- 人教版八年级音乐上册 第一单元 《拉起手》 教案
评论
0/150
提交评论