穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合,则A0或B0或3C1或D1或32 直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )Axy+1=0,2xy=0Bxy1=0,x2y=0Cx+y+1=0,2x+y=0Dxy+1=0,x+2y=03 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD4 已知向量=(1,1,0),=(1,0,2)且k+与2互相垂直,则k的值是( )A1BCD5 与向量=(1,3,2)平行的一个向量的坐标是( )A(,1,1)B(1,3,2)C(,1)D(,3,2) 6 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D47 已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x8 函数的定义域是( )A(,2)B2,+)C(,2D(2,+)9 曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x510半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR311设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD12若某程序框图如图所示,则该程序运行后输出的值是( )A. B.C. D. 【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.二、填空题13已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是14【盐城中学2018届高三上第一次阶段性考试】函数f(x)=xlnx的单调减区间为 15函数的定义域是 16在极坐标系中,曲线C1与C2的方程分别为2cos2=sin与cos=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为17已知数列的首项,其前项和为,且满足,若对,恒成立,则的取值范围是_【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力18设平面向量,满足且,则 ,的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.三、解答题19(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1 20(本题12分)正项数列满足(1)求数列的通项公式;(2)令,求数列的前项和为.21设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 22函数f(x)=sin2x+sinxcosx(1)求函数f(x)的递增区间;(2)当x0,时,求f(x)的值域23已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积24已知命题p:“存在实数a,使直线x+ay2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且q”是真命题,求实数a的取值范围穆棱市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】,故或,解得或或,又根据集合元素的互异性,所以或。2 【答案】C【解析】解:圆x2+y22x+4y=0化为:圆(x1)2+(y+2)2=5,圆的圆心坐标(1,2),半径为,直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点或者直线经过圆心,直线的斜率为1,直线l的方程是:y+2=(x1),2x+y=0,即x+y+1=0,2x+y=0故选:C【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题3 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义4 【答案】D【解析】解: =(1,1,0),=(1,0,2),k+=k(1,1,0)+(1,0,2)=(k1,k,2),2=2(1,1,0)(1,0,2)=(3,2,2),又k+与2互相垂直,3(k1)+2k4=0,解得:k=故选:D【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题5 【答案】C【解析】解:对于C中的向量:(,1)=(1,3,2)=,因此与向量=(1,3,2)平行的一个向量的坐标是故选:C【点评】本题考查了向量共线定理的应用,属于基础题6 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得7 【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查8 【答案】D【解析】解:根据函数有意义的条件可知x2故选:D9 【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易10【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A11【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题12【答案】A【解析】运行该程序,注意到循环终止的条件,有n10,i1;n5,i2;n16,i3;n8,i4;n4,i5;n2,i6;n1,i7,到此循环终止,故选 A.二、填空题13【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题14【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系15【答案】考点:定义域16【答案】(1,2) 【解析】解:由2cos2=sin,得:22cos2=sin,即y=2x2由cos=1,得x=1联立,解得:曲线C1与C2交点的直角坐标为(1,2)故答案为:(1,2)【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题17【答案】 18【答案】,. 【解析】,而,当且仅当与方向相同时等号成立,故填:,.三、解答题19【答案】【解析】解:(1)由题意作出可行域如下,结合图象可知,当过点A(2,1)时有最大值,故Zmax=221=3;(2)由题意作图象如下,根据距离公式,原点O到直线2x+yz=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+yz=0与椭圆+=1相切时最大,联立方程化简可得,116x2100zx+25z2400=0,故=10000z24116(25z2400)=0,故z2=116,故z=2x+y的最大值为【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用20【答案】(1);(2).考点:1一元二次方程;2裂项相消法求和21【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键22【答案】 【解析】解:(1)(2分)令解得f(x)的递增区间为(6分)(2),(8分),(10分)f(x)的值域是(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力23【答案】 【解析】解:由题意设a=n、b=n+1、c=n+2(nN+),最大角是最小角的2倍,C=2A,由正弦定理得,则,得cosA=,由余弦定理得,cosA=,=,化简得,n=4,a=4、b=5、c=6,cosA=,又0A,sinA=,ABC的面积S=【点评】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论