




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷错那县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?2 复数的虚部为( )A2B2iC2D2i3 函数的定义域是( )A0,+) B1,+) C(0,+) D(1,+)4 过抛物线y=x2上的点的切线的倾斜角( )A30B45C60D1355 在ABC中,角A,B,C所对的边分别是a,b,c,若+1=0,则角B的度数是( )A60B120C150D60或1206 三个数60.5,0.56,log0.56的大小顺序为( )Alog0.560.5660.5Blog0.5660.50.56C0.5660.5log0.56D0.56log0.5660.5 7 已知函数f(x)=1+x+,则下列结论正确的是( )Af(x)在(0,1)上恰有一个零点Bf(x)在(1,0)上恰有一个零点Cf(x)在(0,1)上恰有两个零点Df(x)在(1,0)上恰有两个零点8 若,则不等式成立的概率为( )A B C D9 函数y=(x25x+6)的单调减区间为( )A(,+)B(3,+)C(,)D(,2)10用秦九韶算法求多项式f(x)=x65x5+6x4+x2+0.3x+2,当x=2时,v1的值为( )A1B7C7D511设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D12已知集合,全集,则( )(A) ( B ) (C) (D) 二、填空题13设函数有两个不同的极值点,且对不等式恒成立,则实数的取值范围是 14调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元15刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下: 甲说:“我们四人都没考好” 乙说:“我们四人中有人考的好” 丙说:“乙和丁至少有一人没考好” 丁说:“我没考好”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了 16某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元17函数f(x)=2ax+2a+1的图象经过四个象限的充要条件是18幂函数在区间上是增函数,则 三、解答题19设圆C满足三个条件过原点;圆心在y=x上;截y轴所得的弦长为4,求圆C的方程20已知定义在区间(0,+)上的函数f(x)满足f()=f(x1)f(x2)(1)求f(1)的值;(2)若当x1时,有f(x)0求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=1,求f(x)在3,25上的最小值21已知函数f(x)=|x10|+|x20|,且满足f(x)10a+10(aR)的解集不是空集()求实数a的取值集合A()若bA,ab,求证aabbabba 22设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值23(本题满分14分)已知两点与是直角坐标平面内两定点,过曲线上一点作轴的垂线,垂足为,点满足,且.(1)求曲线的方程;(2)设直线与曲线交于两点,坐标原点到直线的距离为,求面积的最大值.【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积总之该题综合性强,难度大24已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围错那县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误2 【答案】C【解析】解:复数=1+2i的虚部为2故选;C【点评】本题考查了复数的运算法则、虚部的定义,属于基础题3 【答案】A【解析】解:由题意得:2x10,即2x1=20,因为21,所以指数函数y=2x为增函数,则x0所以函数的定义域为0,+)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域4 【答案】B【解析】解:y=x2的导数为y=2x,在点的切线的斜率为k=2=1,设所求切线的倾斜角为(0180),由k=tan=1,解得=45故选:B【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题5 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:+1=0,即1=,整理得:2sinAcosBcosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又A+B+C=180,sin(B+C)=sinA,可得2sinAcosB=sinA,sinA0,2cosB=1,即cosB=,则B=60故选:A【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键6 【答案】A【解析】解:60.560=1,00.560.50=1,log0.56log0.51=0log0.560.5660.5故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题7 【答案】B【解析】解:f(x)=1x+x2x3+x2014=(1x)(1+x2+x2012)+x2014;f(x)0在(1,0)上恒成立;故f(x)在(1,0)上是增函数;又f(0)=1,f(1)=110;故f(x)在(1,0)上恰有一个零点;故选B【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题8 【答案】D【解析】考点:几何概型9 【答案】B【解析】解:令t=x25x+6=(x2)(x3)0,可得 x2,或 x3,故函数y=(x25x+6)的定义域为(,2)(3,+)本题即求函数t在定义域(,2)(3,+)上的增区间结合二次函数的性质可得,函数t在(,2)(3,+)上的增区间为 (3,+),故选B10【答案】C【解析】解:f(x)=x65x5+6x4+x2+0.3x+2=(x5)x+6)x+0)x+2)x+0.3)x+2,v0=a6=1,v1=v0x+a5=1(2)5=7,故选C11【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B12【答案】C【解析】 ,故选C二、填空题13【答案】【解析】试题分析:因为,故得不等式,即,由于,令得方程,因 , 故,代入前面不等式,并化简得,解不等式得或,因此, 当或时, 不等式成立,故答案为. 考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.11114【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题15【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。16【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错17【答案】 【解析】解:f(x)=2ax+2a+1,求导数,得f(x)=a(x1)(x+2)a=0时,f(x)=1,不符合题意;若a0,则当x2或x1时,f(x)0;当2x1时,f(x)0,f(x)在(2,1)是为减函数,在(,2)、(1,+)上为增函数;若a0,则当x2或x1时,f(x)0;当2x1时,f(x)0,f(x)在(2,1)是为增函数,在(,2)、(1,+)上为减函数因此,若函数的图象经过四个象限,必须有f(2)f(1)0,即()()0,解之得故答案为:【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题18【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数当是分数时,一般将其先化为根式,再判断;(2)若幂函数在上单调递增,则,若在上单调递减,则;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1三、解答题19【答案】 【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,与y轴截取的弦OA=4,OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x2)2+(y2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OBC2D为正方形,与y轴截取的弦OA=4,OB=C2D,=OD=C2B=2,即圆心C2(2,2),在直角三角形ABC2中,根据勾股定理得:AC2=2,则圆C1方程为:(x+2)2+(y+2)2=8,圆C的方程为:(x2)2+(y2)2=8或(x+2)2+(y+2)2=8【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题20【答案】 【解析】解:(1)令x1=x20,代入得f(1)=f(x1)f(x1)=0,故f(1)=0(4分)(2)证明:任取x1,x2(0,+),且x1x2,则1,由于当x1时,f(x)0,所以f()0,即f(x1)f(x2)0,因此f(x1)f(x2),所以函数f(x)在区间(0,+)上是单调递减函数(8分)(3)因为f(x)在(0,+)上是单调递减函数,所以f(x)在3,25上的最小值为f(25)由f()=f(x1)f(x2)得,f(5)=f()=f(25)f(5),而f(5)=1,所以f(25)=2即f(x)在3,25上的最小值为2(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键21【答案】 【解析】解(1)要使不等式|x10|+|x20|10a+10的解集不是空集,则(|x10|+|x20|)min10a+10,根据绝对值三角不等式得:|x10|+|x20|(x10)(x20)|=10,即(|x10|+|x20|)min=10,所以,1010a+10,解得a0,所以,实数a的取值集合为A=(0,+);(2)a,b(0,+)且ab,不妨设ab0,则ab0且1,则1恒成立,即1,所以,aabbab,将该不等式两边同时乘以abbb得,aabbabba,即证【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题22【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风电场项目前景分析与实施路径
- 2025重庆工程学院科研项目协作配套合同审批表
- 江西建设职业技术学院《食品酶工程》2023-2024学年第二学期期末试卷
- 成都理工大学《第二外语(Ⅱ)(日语)》2023-2024学年第二学期期末试卷
- 山西工程技术学院《可编程序控制器原理及应用》2023-2024学年第二学期期末试卷
- 2025届北京市海淀区十一校初三下学期4月月考化学试题含解析
- 2025届江苏新沂一中全国高三冲刺考(一)全国I卷语文试题含解析
- 燕山大学《环境工程学II实验》2023-2024学年第二学期期末试卷
- 延安大学《面向对象程序设计(Java)实验》2023-2024学年第二学期期末试卷
- 广东省罗定市明德实验学校2025年数学五年级第二学期期末预测试题含答案
- 技能成才强国有我
- 全科医学病例讨论教学应用
- 网络安全技术服务方案
- 列车电子防滑器-电子防滑器原理
- 《教师职业道德与政策法规》考试复习题库(含答案)
- 游戏:看表情符号猜成语PPT
- 施工总平面图及说明
- 别墅加装电梯井施工方案
- 2023年政治七年级考纲知识点
- 学生食堂水电施工方案
- 石油天然气集团公司档案管理手册
评论
0/150
提交评论