




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
务川仡佬族苗族自治县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称2 函数f(x)=x2+,则f(3)=( )A8B9C11D103 如图,已知正方体ABCDA1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是( )A5B4C4D24 已知变量满足约束条件,则的取值范围是( )A B C D5 已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD6 已知圆方程为,过点与圆相切的直线方程为( )A B C D7 已知x,y满足时,z=xy的最大值为( )A4B4C0D28 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m39 已知集合,则下列式子表示正确的有( );A1个 B2个 C3个 D4个10已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x11二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力12在正方体ABCDABCD中,点P在线段AD上运动,则异面直线CP与BA所成的角的取值范围是( )A0B0C0D0二、填空题13已知函数f(x)=x3ax2+3x在x1,+)上是增函数,求实数a的取值范围14设为锐角,若sin()=,则cos2=15已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)16如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为17已知函数f(x)=xm过点(2,),则m=18不等式的解集为三、解答题19已知命题p:“存在实数a,使直线x+ay2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且q”是真命题,求实数a的取值范围20(本小题满分12分)一直线被两直线截得线段的中点是点, 当点为时, 求此直线方程.21设函数f(x)=x2ex(1)求f(x)的单调区间;(2)若当x2,2时,不等式f(x)m恒成立,求实数m的取值范围22已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围23已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由24(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由务川仡佬族苗族自治县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C2 【答案】C【解析】解:函数=,f(3)=32+2=11故选C3 【答案】 D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0a4,0b4,P(x,y,4),0x4,0y4,则F(0,b,4),E(4,a,0),=(x,by,0),点P到点F的距离等于点P到平面ABB1A1的距离,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),|PE|min=2故选:D【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识4 【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用5 【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D6 【答案】A【解析】试题分析:圆心,设切线斜率为,则切线方程为,由,所以切线方程为,故选A.考点:直线与圆的位置关系7 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=xy为y=xz,由图可知,当直线y=xz过点A时,直线在y轴上的截距最小,z有最大值为4故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题8 【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题9 【答案】C【解析】试题分析:,所以正确.故选C.考点:元素与集合关系,集合与集合关系10【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查11【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A12【答案】D【解析】解:A1BD1C,CP与A1B成角可化为CP与D1C成角AD1C是正三角形可知当P与A重合时成角为,P不能与D1重合因为此时D1C与A1B平行而不是异面直线,0故选:D二、填空题13【答案】(,3 【解析】解:f(x)=3x22ax+3,f(x)在1,+)上是增函数,f(x)在1,+)上恒有f(x)0,即3x22ax+30在1,+)上恒成立则必有1且f(1)=2a+60,a3;实数a的取值范围是(,314【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=12sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题15【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目16【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题17【答案】1 【解析】解:将(2,)代入函数f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题18【答案】(0,1 【解析】解:不等式,即,求得0x1,故答案为:(0,1【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题三、解答题19【答案】 【解析】解:直线x+ay2=0与圆x2+y2=1有公共点1a21,即a1或a1,命题p为真命题时,a1或a1;点(a,1)在椭圆内部,命题q为真命题时,2a2,由复合命题真值表知:若命题“p且q”是真命题,则命题p,q都是真命题即p真q假,则a2或a2故所求a的取值范围为(,22,+)20【答案】【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线上,列出方程组,求解的值,即可求解直线的方程. 1考点:直线方程的求解.21【答案】 【解析】解:(1)令f(x)的单增区间为(,2)和(0,+);单减区间为(2,0)(2)令x=0和x=2,f(x)0,2e2m022【答案】 【解析】解:()|xa|2,a2xa+2,f(x)2的解集为0,4,a=2()f(x)+f(x+5)=|x2|+|x+3|(x2)(x+3)|=5,x0R,使得,即成立,4m+m2f(x)+f(x+5)min,即4m+m25,解得m5,或m1,实数m的取值范围是(,5)(1,+)23【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)作MEAC,EFBC,连结FM,易证FMBC,MFE为二面角MBCD的平面角,设CAM=,EM=2sin,EF=,tanMFE=1,tan=,CM=2【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目24【答案】【解析】解:(1)f(x)x2axa2ln x的定义域为x|x0,f(x)2xa.当a0时,由f(x)0得x,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 童车产品设计与儿童成长需求考核试卷
- 海洋工程腐蚀控制考核试卷
- 物业公司安全生产工作年总结范文(5篇)
- 顺创入股协议合同
- 资产股份合同协议
- 设计租船合同协议
- 政府承建合同协议
- 研发产品合同协议
- 申诉代理合同协议
- 碎石运输合同协议
- 虚拟资产安全管理制度
- 2025年初级会计师考试学员疑惑解答试题及答案
- DB51T3251-2025煤矿井下应急广播系统使用管理规范
- 2025年高考地理二轮复习:综合题答题技巧(含练习题及答案)
- 护理科研课程分享
- 体检中心工作制度和岗位职责
- 【小学】【带班育人方略】三阶四步:培育“三品”少年
- 2025陕煤集团榆林化学有限责任公司招聘(137人)笔试参考题库附带答案详解
- 衢州2025年浙江衢州龙游县综合事业单位招聘43人笔试历年参考题库附带答案详解
- 测绘成果质量管理制度(一)
- 小学防碘缺乏课件
评论
0/150
提交评论