




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷甘洛县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 阅读下面的程序框图,则输出的S=( )A14B20C30D552 下列说法正确的是( ) A.圆锥的侧面展开图是一个等腰三角形; B.棱柱即是两个底面全等且其余各面都是矩形的多面体; C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥; D.通过圆台侧面上的一点,有无数条母线. 3 函数f(x)=ax2+bx与f(x)=logx(ab0,|a|b|)在同一直角坐标系中的图象可能是( )ABCD4 计算log25log53log32的值为( )A1B2C4D85 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使216 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点7 下列命题中正确的是( )A若命题p为真命题,命题q为假命题,则命题“pq”为真命题B命题“若xy=0,则x=0”的否命题为:“若xy=0,则x0”C“”是“”的充分不必要条件D命题“xR,2x0”的否定是“”8 已知点A(2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是( )A5B3C2D9 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)10下列满足“xR,f(x)+f(x)=0且f(x)0”的函数是( )Af(x)=xe|x|Bf(x)=x+sinxCf(x)=Df(x)=x2|x|11已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)12已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD2二、填空题13抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为14已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=15已知是函数两个相邻的两个极值点,且在处的导数,则_16一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是17某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.18如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km三、解答题19已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0)(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程20在平面直角坐标系中,ABC各顶点的坐标分别为:A(0,4);B(3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程21在某大学自主招生考试中,所有选报类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人()求该考场考生中“阅读与表达”科目中成绩为A的人数;()若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;()已知参加本考场测试的考生中,恰有两人的两科成绩均为A在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率22已知集合A=x|1x3,集合B=x|2mx1m(1)若AB,求实数m的取值范围;(2)若AB=,求实数m的取值范围23求点A(3,2)关于直线l:2xy1=0的对称点A的坐标24火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?甘洛县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=54退出循环,故答案为C【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题2 【答案】C【解析】考点:几何体的结构特征.3 【答案】 D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是减函数,D正确【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力4 【答案】A【解析】解:log25log53log32=1故选:A【点评】本题考查对数的运算法则的应用,考查计算能力5 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A6 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值7 【答案】 D【解析】解:若命题p为真命题,命题q为假命题,则命题“pq”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy0,则x0”,故B不正确;“”“+2k,或,kZ”,“”“”,故“”是“”的必要不充分条件,故C不正确;命题“xR,2x0”的否定是“”,故D正确故选D【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答8 【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y2=0的距离,即|AM|min=故选:D【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义9 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键10【答案】A【解析】解:满足“xR,f(x)+f(x)=0,且f(x)0”的函数为奇函数,且在R上为减函数,A中函数f(x)=xe|x|,满足f(x)=f(x),即函数为奇函数,且f(x)=0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(x)=f(x),即函数为奇函数,但f(x)=1+cosx0,在R上是增函数,C中函数f(x)=,满足f(x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(x)=f(x),故函数为偶函数,故选:A11【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D12【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键二、填空题13【答案】3xy11=0 【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1y2)(y1+y2)=6(x1x2),即有kAB=3,则直线方程为y1=3(x4),即为3xy11=0将直线y=3x11代入抛物线的方程,可得9x272x+121=0,判别式为722491210,故所求直线为3xy11=0故答案为:3xy11=014【答案】1 【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(1)=f(1)=1故答案为:115【答案】【解析】考点:三角函数图象与性质,函数导数与不等式【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,就可以求出.116【答案】 【解析】解:由题意可得,2a,2b,2c成等差数列2b=a+c4b2=a2+2ac+c2b2=a2c2联立可得,5c2+2ac3a2=05e2+2e3=00e1故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题17【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.18【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为三、解答题19【答案】 【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是椭圆经过点D(2,0),左焦点为,a=2,可得b=1因此,椭圆的标准方程为(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,点P(x0,y0)在椭圆上,可得,化简整理得,由此可得线段PA中点M的轨迹方程是【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题20【答案】 【解析】解(1),根据直线的斜截式方程,直线AB:,化成一般式为:4x3y+12=0,根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y7=0,AB边的高所在直线的方程为3x+4y7=021【答案】 【解析】解:()因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有100.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40(10.3750.3750.150.025)=400.075=3人;()该考场考生“数学与逻辑”科目的平均分为:=2.9;()因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃工业职业技术学院《医疗器械研发管理与产品认证》2023-2024学年第二学期期末试卷
- 2025年青海省海东市平安区第二中学高三第九次模拟物理试题试卷含解析
- 菏泽职业学院《人力资源管理法规政策》2023-2024学年第二学期期末试卷
- 蜜蜂自然课程讲解
- 2025年贵州省铜仁地区松桃县市级名校初三1月联考化学试题试卷含解析
- 邢台学院《英美文学概论》2023-2024学年第一学期期末试卷
- 漳州科技职业学院《经贸日语》2023-2024学年第二学期期末试卷
- 湖北省宣恩县2025届初三2月月考试卷物理试题含解析
- 2025年天津市滨海新区名校初三下学期第二次阶段(期中)考试化学试题含解析
- 华南农业大学《体育(一)》2023-2024学年第二学期期末试卷
- 江铜集团招聘笔试冲刺题2025
- 电感器在DC-DC转换器中的应用考核试卷
- 电梯扶梯管理制度
- 考研学习笔记 《微生物学教程》(第3版)笔记和课后习题(含考研真题)详解
- 【MOOC】电子数据取证技术-南京邮电大学 中国大学慕课MOOC答案
- 【MOOC】农作学-西北农林科技大学 中国大学慕课MOOC答案
- 通信行业网络性能优化与安全防护措施研究
- 项目一任务三学包粽子课件浙教版初中劳动技术七年级下册
- 2024年4月自考《市场营销学试题》真题完整试卷
- DL-T+5759-2017配电系统电气装置安装工程施工及验收规范
- 中医类新技术新项目
评论
0/150
提交评论