




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线的 两点式方程 y=kx+b y- y0 =k(x- x0 ) k为斜率, P0(x0 ,y0)为经过直线的点 k为斜率,b为截距 一、复习、引入 1). 直线的点斜式方程: 2). 直线的斜截式方程: 解:设直线方程为:y=kx+b 例1.已知直线经过P1(1,3)和P2(2,4)两点,求直 线的方程 一般做法: 由已知得: 解方程组得: 所以:直线方程为: y=x+2 方程思想 举例 还有其他做法吗? 为什么可以这样做,这样做的 根据是什么? 即: 得: y=x+2 设P(x,y)为直线上不同于P1 , P2的动点, 与P1(1,3)P2(2,4)在同一直线上,根据斜率相 等可得: 二、直线两点式方程的推导 已知两点P1 ( x1 , y1 ),P2(x2 , y2),求通过这 两点的直线方程 解:设点P(x,y)是直线上不同于P1 , P2的点 可得直线的两点式方程: kPP1= kP1P2 记忆特点: 1.左边全为y,右边全为x 2.两边的分母全为常数 3.分子,分母中的减数相同 推广 不是! 是不是已知任一直线中的两点就能用两 点式 写出直线方程呢? 两点式不能表示平行于坐标轴或与坐 标轴重合的直线 注意: 当x1 x2或y1= y2时,直线P1 P2没有两点式程.(因 为x1 x2或y1= y2时,两点式的分母为零,没有意义) 那么两点式不能用来表示哪些直线的方程呢 ? 三、两点式方程的适应范围 若点P1 (x1 , y1 ),P2( x2 , y2)中有x1 x2,或 y1= y2,此时过这两点的直线方程是什么? 当x1 x2 时方程为: x x 当 y1= y2时方程为: y = y 例2:已知直线 l 与x轴的交点为A(a,0),与y轴的 交点为B(0,b),其中a0,b0,求直线l 的方程 解:将两点A(a,0), B(0,b)的坐标代入两点式, 得: 即 所以直线l 的方程为: 四、直线的截距式方程 截距可是正数,负数和零 注意: 不能表示过原点或与坐标轴平行或重合的直线 直线与 x 轴的交点(o,a)的横坐标 a 叫做 直线在 x 轴上的截距 是不是任意一条直线都有其截距式方程呢? 截距式直线方程: 直线与 y 轴的交点(b,0)的纵坐标 b 叫做 直线在 y 轴上的截距 过(1,2)并且在两个坐标轴上的截距 相等的直线有几条? 解: 两条 例 3: 那还有一条呢?y=2x (与x轴和y轴的截距都为0) 所以直线方程为:x+y-3=0 a=3 把(1,2)代入得: 设:直线的方程为: 举例 解:三条 (2) 过(1,2)并且在两个坐标轴上的截距的绝 对值相等的直线有几条? 解得:a=b=3或a=-b=-1 直线方程为:y+x-3=0、y-x-1=0或y=2x 设 例4:已知角形的三个顶点是A(5,0), B(3,3),C(0,2),求BC边所在的直线 方程,以及该边上中线的直线方程. 解:过B(3,-3),C(0,2)两点式方程为: 整理得:5x+3y-6=0 这就是BC边所在直线的方程. 五、直线方程的应用 BC边上的中线是顶点A与BC边中点M所连 线段,由中点坐标公式可得点M的坐标为: 即 整理得:x+13y+5=0 这就是BC边上中线所在的直线的方程. 过A(-5,0),M 的直线方程 M 中点坐标公式: 则 若P1 ,P2坐标分别为( x1 ,y1 ), (x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商洛职业技术学院《航线设计》2023-2024学年第二学期期末试卷
- 南溪县2024-2025学年四年级数学第二学期期末监测试题含解析
- 清远职业技术学院《图文信息处理与再现》2023-2024学年第二学期期末试卷
- 浙江交通职业技术学院《药剂学实验仿真》2023-2024学年第二学期期末试卷
- 山东农业工程学院《生物技术制药双语》2023-2024学年第二学期期末试卷
- 山东省潍坊市临朐县2024-2025学年高考全真模拟考卷物理试题含解析
- 四川省巴中学市恩阳区实验中学2025届初三第二次校模拟考试英语试题含答案
- 吉林省吉林市吉化九中学2025届初三下学期暑假联考化学试题含解析
- 江苏省徐州市邳州市运河中学2025届初三下学期期末教学质量检测试题(一模)数学试题含解析
- 长春工业大学《放射生物学》2023-2024学年第二学期期末试卷
- 2025年山东省东营市广饶县一中中考一模英语试题(原卷版+解析版)
- 工贸行业隐患排查指导手册
- 形势与政策(贵州财经大学)知到智慧树章节答案
- GB/T 36187-2024冷冻鱼糜
- 主提升机司机培训课件
- 数独比赛六宫练习题道练习
- GB3469-83《文献类型与文献载体代码》
- 互联网大学生创新创业大赛培训
- 3号钢筋加工场桁吊安装方案
- 部编版(统编)六年级语文下册文学常识及文化常识(共4页)
- 世界500强企业企业文化(企业使命、愿景、核心价值观)集锦
评论
0/150
提交评论