




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
襄州区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D302 如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD3 是z的共轭复数,若z+=2,(z)i=2(i为虚数单位),则z=( )A1+iB1iC1+iD1i4 设F1,F2为椭圆=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( )ABCD5 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角最大时采集效果最好,则采集效果最好时位置C到AB的距离是( )A2mB2mC4 mD6 m6 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱柱的侧面,绕行两周到达点的最短路线的长为( )A B C D7 已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为,则直线的方程为( ) A B C D8 如图,空间四边形OABC中,点M在OA上,且,点N为BC中点,则等于( )ABCD9 已知向量,若为实数,则( )A B C1 D210定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或211设f(x)=ex+x4,则函数f(x)的零点所在区间为( )A(1,0)B(0,1)C(1,2)D(2,3)12将函数()的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的最小值为( )(A) ( B ) (C) (D) 二、填空题13已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=14运行如图所示的程序框图后,输出的结果是15袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为16已知函数f(x)=x2+xb+(a,b为正实数)只有一个零点,则+的最小值为17如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈依此类推,第8圈的长为 18已知关于的不等式的解集为,则关于的不等式的解集为_.三、解答题19(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分别记为,其频率分布直方图如下图所示()根据频率分布直方图,估计该旅游散团团员的平均年龄;()该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率20(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.21(本题满分12分)在中,已知角所对的边分别是,边,且,又的面积为,求的值22对于任意的nN*,记集合En=1,2,3,n,Pn=若集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质如当n=2时,E2=1,2,P2=x1,x2P2,且x1x2,不存在kN*,使x1+x2=k2,所以P2具有性质()写出集合P3,P5中的元素个数,并判断P3是否具有性质()证明:不存在A,B具有性质,且AB=,使E15=AB()若存在A,B具有性质,且AB=,使Pn=AB,求n的最大值 23设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1=a1,b2=2,q=d,S10=100(1)求数列an,bn的通项公式(2)当d1时,记cn=,求数列cn的前n项和Tn24设椭圆C: +=1(ab0)过点(0,4),离心率为(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标襄州区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A2 【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D3 【答案】D【解析】解:由于,(z)i=2,可得z=2i 又z+=2 由解得z=1i故选D4 【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(,0),F2()a=2,b=1点P在椭圆上,若线段PF1的中点在y轴上,PF1F1F2,|PF2|=,由勾股定理可得:|PF1|=故选:C【点评】本题考查椭圆的简单性质的应用,考查计算能力5 【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=2py(p0),将点(4,4)代入,可得p=2,所以抛物线方程为x2=4y,设C(x,y)(y6),则由A(4,6),B(4,6),可得kCA=,kCB=,tanBCA=,令t=y+6(t0),则tanBCA=t=2时,位置C对隧道底AB的张角最大,故选:A【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tanBCA,正确运用基本不等式是关键6 【答案】D【解析】考点:多面体的表面上最短距离问题【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题7 【答案】D 【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即,选D8 【答案】B【解析】解: =;又,故选B【点评】本题考查了向量加法的几何意义,是基础题9 【答案】B 【解析】试题分析:因为,所以,又因为,所以,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.10【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键11【答案】C【解析】解:f(x)=ex+x4,f(1)=e1140,f(0)=e0+040,f(1)=e1+140,f(2)=e2+240,f(3)=e3+340,f(1)f(2)0,由零点判定定理可知,函数的零点在(1,2)故选:C12【答案】B 【解析】将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,可得,求得的最小值为,故选B二、填空题13【答案】1 【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(1)=f(1)=1故答案为:114【答案】0 【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+sin的值,由于sin周期为8,所以S=sin+sin+sin=0故答案为:0【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查15【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键16【答案】9+4 【解析】解:函数f(x)=x2+xb+只有一个零点,=a4(b+)=0,a+4b=1,a,b为正实数,+=(+)(a+4b)=9+9+2=9+4当且仅当=,即a=b时取等号,+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题17【答案】63 【解析】解:第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23第n圈长为:n+(2n1)+2n+2n+n=8n1故n=8时,第8圈的长为63,故答案为:63【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形18【答案】【解析】考点:一元二次不等式的解法.三、解答题19【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力20【答案】(1)证明见解析;(2)证明见解析.【解析】1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段21【答案】【解析】试题解析:由可得,即.,.,.又的面积为,即,.又由余弦定理可得,.1考点:解三角形问题【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题22【答案】【解析】解:()对于任意的nN*,记集合En=1,2,3,n,Pn=集合P3,P5中的元素个数分别为9,23,集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质,P3不具有性质.证明:()假设存在A,B具有性质,且AB=,使E15=AB其中E15=1,2,3,15因为1E15,所以1AB,不妨设1A因为1+3=22,所以3A,3B同理6A,10B,15A因为1+15=42,这与A具有性质矛盾所以假设不成立,即不存在A,B具有性质,且AB=,使E15=AB.解:()因为当n15时,E15Pn,由()知,不存在A,B具有性质,且AB=,使Pn=AB若n=14,当b=1时,取A1=1,2,4,6,9,11,13,B1=3,5,7,8,10,12,14,则A1,B1具有性质,且A1B1=,使E14=A1B1当b=4时,集合中除整数外,其余的数组成集合为,令,则A2,B2具有性质,且A2B2=,使当b=9时,集中除整数外,其余的数组成集合,令,则A3,B3具有性质,且A3B3=,使集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1A2A3C,B=B1B2B3,则AB=,且P14=AB综上,所求n的最大值为14.【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用23【答案】 【解析】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n1,bn=2n1;当时,an=(2n+79),bn=9;(2)当d1时,由(1)知an=2n1,bn=2n1,cn=,Tn=1+3+5+7+9+(2n1),Tn=1+3+5+7+(2n3)+(2n1),Tn=2+(2n1)=3,Tn=624【答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提升2025年公共营养师考试分数的有效方法试题及答案
- 精准掌握知识2025年计算机二级考试试题及答案
- 2025年税务师考试结构试题及答案
- 教师资格考试榜样力量与试题及答案
- 教师资格考试环境教育题及答案
- 教育教学法试题及答案汇集
- 2024-2025学年上海市虹口区复兴高中高考物理一模试卷含解析
- 云南省宾川县第四高级中学2025年高三考前热身物理试卷含解析
- 2024-2025学年四年级人教版下学期数学期中考试卷(拓展卷)(含解析)
- 2025年执业医师考试健康意识试题及答案
- 合肥长鑫存储在线测评题2024
- 智能建筑工程分部(子分部)工程质量验收
- 银发经济-夕阳红之家创业计划书
- 三年级第14课青田石雕-(课件练习)
- 肺结节诊治中国专家共识(2024年版)解读
- 值班岗亭施工方案
- 生命体征观察与护理-体温单绘制(护理技术课件)
- DNM-9602酶标分析仪操作规程
- 2024年金华市中考数学试卷
- 四川省宜宾龙文学校2022-2023学年八年级下学期6月检测(期末模拟)历史试卷
- 以退为进的中国惠民保发展-基于73款停售惠民保产品的分析-【复旦许闲】20240719
评论
0/150
提交评论