




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法m w.w.w.k.s.5.u.c.o例1 在数列中,,,求通项公式.解:原递推式可化为:则 ,逐项相加得:.故.二、作商求和法例2 设数列是首项为1的正项数列,且(n=1,2,3),则它的通项公式是=(2000年高考15题)解:原递推式可化为: =0 0, 则 , 逐项相乘得:,即=.三、换元法例3 已知数列,其中,且当n3时,求通项公式(1986年高考文科第八题改编).解:设,原递推式可化为: 是一个等比数列,公比为.故.故.由逐差法可得:. 例4已知数列,其中,且当n3时,求通项公式。解 由得:,令,则上式为,因此是一个等差数列,公差为1.故.。由于又所以,即 四、积差相消法 例5(1993年全国数学联赛题一试第五题)设正数列,满足= 且,求的通项公式.解 将递推式两边同除以整理得:设=,则=1,故有 ()由+ +()得=,即=.逐项相乘得:=,考虑到,故 . 五、取倒数法例6 已知数列中,其中,且当n2时,求通项公式。解 将两边取倒数得:,这说明是一个等差数列,首项是,公差为2,所以,即.六、取对数法例7 若数列中,=3且(n是正整数),则它的通项公式是=(2002年上海高考题).解 由题意知0,将两边取对数得,即,所以数列是以=为首项,公比为2的等比数列, ,即.七、平方(开方)法例8 若数列中,=2且(n),求它的通项公式是.解 将两边平方整理得。数列是以=4为首项,3为公差的等差数列。因为0,所以。八、待定系数法待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:1、(A、B为常数)型,可化为=A()的形式.例9 若数列中,=1,是数列的前项之和,且(n),求数列的通项公式是.解 递推式可变形为 (1)设(1)式可化为 (2)比较(1)式与(2)式的系数可得,则有。故数列是以为首项,3为公比的等比数列。=。所以。当n,。数列的通项公式是 。2、(A、B、C为常数,下同)型,可化为=)的形式.例10 在数列中,求通项公式。解:原递推式可化为: 比较系数得=-4,式即是:.则数列是一个等比数列,其首项,公比是2. 即.3、型,可化为的形式。例11 在数列中,当, 求通项公式.解:式可化为:比较系数得=-3或=-2,不妨取=-2.式可化为:则是一个等比数列,首项=2-2(-1)=4,公比为3.利用上题结果有:.4、型,可化为的形式。例12 在数列中,=6 求通项公式.解 式可化为: 比较系数可得:=-6, 式为是一个等比数列,首项,公比为.即 故.九、猜想法 运用猜想法解题的一般步骤是:首先利用所给的递推式求出,然后猜想出满足递推式的一个通项公式,最后用数学归纳法证明猜想是正确的。例13 在各项均为正数的数列中,为数列的前n项和,=+ ,求其通项公式。 求递推数列通项的特征根法与不动点法一、形如是常数)的数列 形如是常数)的二阶递推数列都可用特征根法求得通项,其特征方程为 若有二异根,则可令是待定常数) 若有二重根,则可令是待定常数) 再利用可求得,进而求得例1已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 例2已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 二、形如的数列 对于数列,是常数且) 其特征方程为,变形为 若有二异根,则可令(其中是待定常数),代入的值可求得值 这样数列是首项为,公比为的等比数列,于是这样可求得 若有二重根,则可令(其中是待定常数),代入的值可求得值 这样数列是首项为,公差为的等差数列,于是这样可求得此方法又称不动点法例3已知数列满足,求数列的通项解:其特征方程为,化简得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 激光成品检验试题及答案分享
- 牙体牙髓病试题及答案
- 系统架构设计师考试中的数据结构解析试题及答案
- 激光设备生产流程优化试题及答案
- 结果导向税务师考试试题及答案
- 现代卫生管理证书考核试题及答案
- 自考建筑制图试题及答案
- 菊花台考试题及答案
- 联合工会笔试题库及答案
- 医学考研 试题及答案
- 2025年中考道德与法治仿真模拟测试卷(含答案)
- 工程造价司法鉴定与纠纷调解典型案例-记录
- 2025年济源职业技术学院单招职业技能测试题库学生专用
- 2025年春季学期初中历史中考复习计划
- 第1课时 数与运算(说课稿)-2024-2025学年一年级上册数学人教版
- 内蒙古地区历年中考语文现代文之记叙文阅读63篇(截至2024年)
- 2023年4月信息素养系列培训讲座
- 屋顶光伏支架安装施工方案
- 挖掘机司机岗位安全培训课件
- 新能源购售电合同模板
- 2024年中国浴室套件市场调查研究报告
评论
0/150
提交评论