




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:在运用(、为正整数),(,、为正整数且),(、为正整数),(为正整数),(,为正整数)时,要特别注意各式子成立的条件。上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。注意上述各式的逆向应用。如计算,可先逆用同底数幂的乘法法则将写成,再逆用积的乘方法则计算,由此不难得到结果为1。通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例题:例1:计算列下列各题(1) ; (2) ; (3) 简单练习:一、选择题1. 下列计算正确的是( ) a.2+3=5 b.23=5 c.3m+2m=5m d.2+2=24 2. 下列计算错误的是( )a.52-2=42 b.m+m=2m c.3m+2m=5m d.2m-1= 2m 3. 下列四个算式中33=23 3+3=6 32=5 p2+p2+p2=3p2 正确的有( ) a.1个 b.2个 c.3个 d.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) a.100102=103 b.10001010=103 c.100103=105 d.1001000=104 二、填空题1. 44=_;44=_。 2、 b2bb7=_。3、103_=1010 4、(-)2(-)35=_。5、5( )=2( ) 4=18 6、(+1)2(1+)(+1)5=_。中等练习:1、 (-10)310+100(-102)的运算结果是( ) a.108 b.-2104 c.0 d.-104 2、(-)6(-)5=_。 3、10m10m-1100=_。 4、a与b互为相反数且都不为0,n为正整数,则下列两数互为相反数的是( ) a.2n-1与-2n-1 b.2n-1与2n-1 c.2n与2n d.2n与2n 5. 计算(-)n(-)n-1等于( ) a.(-)2n-1 b.(-)2n-1 c.(-)2n-1 d.非以上答案6. 7等于( )a.(-2 )5 b、(-2)(-5) c.(-)34 d.(-)(-)6 7、解答题(1) 2(-3) (2) (-)23 (3) 2(-)2(-)3 (4) (-2)(-)2(-3)(-)3(5) (6)x4m x4+m(-x)(7) x6(-x)5-(-x)8 (-x)3 (8) -3(-)4(-)57. 计算(-2)1999+(-2)2000等于( ) a.-23999 b.-2 c.-21999 d.21999 8. 若2n+1x=3 那么x=_较难练习:一、 填空题:1. =_,=_.毛2. =_,=_.3. =_.4. 若,则x=_.5. 若,则m=_;若,则a=_; 若,则y=_;若,则x=_. 6. 若,则=_. 二、选择题7. 下面计算正确的是( ) a; b; c; d8. 8127可记为( ) a.; b.; c.; d.9. 若,则下面多项式不成立的是( ) a.; b.;c.; d.10. 计算等于( ) a.; b.-2; c.; d.11. 下列说法中正确的是( )a. 和 一定是互为相反数 b. 当n为奇数时, 和相等c. 当n为偶数时, 和相等 d. 和一定不相等三、解答题:12. 计算下列各题: (1);(2)(3); (4)。13. 已知的土地上,一年内从太阳得到的能量相当于燃烧煤所产生的能量,那么我国的土地上,一年内从太阳得到的能量相当于燃烧煤多少千克?14 (1) 计算并把结果写成一个底数幂的形式:;。(2)求下列各式中的x: ;。15计算。16. 若,求x的值.二、幂的乘方与积的乘方1、幂的乘方幂的乘方,底数不变,指数相乘.公式表示为:.2、积的乘方积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.公式表示为:.注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数. (2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开. (3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.例题:1.计算:表示 .2.计算:(x)= .3计算:(1); 简单练习:一、判断题1、 ( ) 2、 ( )3、 ( ) 4、 ( )5、 ( )二、填空题:1、;2、,;3、,;4、;5、若 , 则_.三、选择题1、等于( )a、 b、 c、 d、2、等于( )a、 b、 c、 d、3、可写成( )a、 b、 c、 d、4等于( )a b c d无法确定5计算的结果是( )a b c d6若n=,那么n等于( )a b c d7已知,则的值为( )a15 b c d以上都不对中等练习:一、填空题1.计算:(y)+(y)= .2.计算:3.(在括号内填数)二、选择题4.计算下列各式,结果是的是( )ax2x4; b(x2)6; cx4+x4; dx4x4.5.下列各式中计算正确的是( )a(x)=x; b.(a)=a; c.(a)=(a)=a; d.(a)=(a)=a.6.计算的结果是( )a.; b.; c.; d.7.下列四个算式中:(a3)3=a3+3=a6;(b2)22=b222=b8;(x)34=(x)12=x12;(y2)5=y10,正确的算式有( )a0个; b1个; c2个; d3个.8.下列各式:;,计算结果为的有( )a.和; b.和; c.和; d.和. 较难练习:1、2(anbn)2+(a2b2)n2、(-2x2y)3+8(x2)2(-x2)(-y3)3、-2100x0.5100x(-1)1994+4.已知2m=3,2n=22,则22m+n的值是多少5已知,求的值6.已知,求的值7.已知xn=5,yn=3,求 (x2y)2n的值。8比较大小:218x310与210x3159.若有理数a,b,c满足(a+2c-2)2+|4b-3c-4|+|-4b-1|=0,试求a3n+1b3n+2- c4n+210、太阳可以近似的看作是球体,如果用v、r分别代表球的体积和半径,那么,太阳的半径约为6x105千米,它的体积大约是多少立方千米?(取3)三、同底数幂的除法1、同底数幂的除法同底数幂相除,底数不变,指数相减.公式表示为:.2、零指数幂的意义任何不等于0的数的0次幂都等于1.用公式表示为:.3、负整数指数幂的意义任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数,用公式表示为4、绝对值小于1的数的科学计数法 对于一个小于1且大于0的正数,也可以表示成的形式,其中.注意点:(1) 底数不能为0,若为0,则除数为0,除法就没有意义了;(2) 是法则的一部分,不要漏掉.(3) 只要底数不为0,则任何数的零次方都等于1.例题:计算下列各题:(1)(m-1)(m-1);(2)(x-y)(y-x)(x-y);(3)(a)(-a)(a);(4) 2-(-)+().简单练习:1. a=a. 2.若5=1,则k= .33+()= .4用小数表示-3.02110= 。5.计算:= ,= .6.在横线上填入适当的代数式:,.7.计算: = , = 8.计算:= .9.计算:_10(-a)(-a)= ,9273= 。中等练习:1.如果aa=a,那么x等于( ) a3 b.-2m c.2m d.-32.设a0,以下的运算结果:(a) a=a;aa=a;(-a)a=-a;(-a)a=a,其中正确的是( )a. b. c. d. 3.下列各式计算结果不正确的是( )a.ab(ab)2=a3b3; b.a3b22ab=a2b; c.(2ab2)3=8a3b6; d.a3a3a3=a2.4.计算:的结果,正确的是( )a.; b.; c. ; d.5. 对于非零实数,下列式子运算正确的是( )a ; b;c ; d.6若,,则等于( ) a.; b.6 ; c.21; d.20.7.计算:; ; . 8.地球上的所有植物每年能提供人类大约大卡的能量,若每人每年要消耗大卡的植物能量,试问地球能养活多少人?较难练习:1观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,则89的个位数字是( )a.2 ; b4; c8; d6.2.若有意义,则x的取值范围是( ) ax3; bx2 ; cx3或x2; dx3且x2. 3.某种植物花粉的直径约为35000纳米,1纳米=米,用科学记数法表示该种花粉的直径为 . 4. 已知,则x= 5计算:.6.已知:,请你计算右边的算式求出s的值7. 解方程:(1); (2).8. 已知,求的值.9.已知,求(1);(2).10.化简求值:(2x-y)(2x-y)(y-2x),其中x=2,y=-1。运用幂的运算法则的四个注意一、注意法则的拓展性对于含有三个或三个以上同底数幂相乘(除)、幂(积)的乘方等运算,法则仍然适用。例1. 计算:(1)(2)(3)二、注意法则的底数和指数的广泛性运算法则中的底数和指数,可取一个或几个具体的数;也可取单独一个字母或一个单项式,甚至可以是一个多项式。例2. 计算:(1)(2)三、注意法则的可逆性逆向应用运算法则,由结论推出条件,或将某些指数进行分解。例3. 在下面各小题的括号内填入适当的数或代数式:(1)(2)四、注意法则应用的灵活性在运用法则时,要仔细观察题目的特点,采取恰当、巧妙的解法,使解题过程简便。例4. 计算:幂的运算方法总结 作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练。现在对此做一探索。 幂的运算的基本知识就四条性质,写作四个公式:aman=am+n (am)n=amn (ab)m=ambm aman=am-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。问题1、已知a7am=a3a10,求m的值。思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。方法思考:只要是符合公式形式的都可套用公式化简试一试。方法原则:可用公式套一套。但是,渗入幂的代换时,就有点难度了。问题2、已知xn=2,yn=3,求(x2y)3n的值。思路探索:(x2y)3n中没有xn和yn,但运用公式3就可将(x2y)3n化成含有xn和yn的运算。因此可简解为,(x2y)3n =x6ny3n=(xn)6(yn)3=2633=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。方法原则:整体不同靠一靠。然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,am=3,an=5,求am+2n+6的值。思路探索:试逆用公式,变形出与已知同形的幂即可代入了。简解:am+2n+6=ama2na6=am(an)2(a3)2=3254=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。方法原则:逆用公式倒一倒。当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+322x+1=48,求x的值。思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。简解:22x+322x+1=22x2322x21=822x222x =622x=48 22x=8 2x=3 x=1.5方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。问题5、已知64m+12n33m=81,求正整数m、n的值。思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。简解:64m+12n33m =24m+134m+12n33m=24m+1-n3m+1=81=34 m、n是正整数 m+1=4,4m+1n=0 m=3,n=13方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=22b=42a,由此可求。简解:由题意知2c=22b=42a 2c=2b+1=2a+2 c=b+1=a+2方法思考:底数是相同的常数时,通常把冪的值同乘以适当的常数变相同,然后比较它们的指数。方法原则:系数质数和指数,常数底数造一造。综合用到以上方法就更需要引起注意。问题7、已知2x=m,2y=n,求22x+3y+1的值。思路探索:要求的代数式与已知距离甚远,考虑逆用公式将其变成已知的代数式的形式。简解:22x+3y+1=22x23y21=(2x)2(2y)32=m2n32=2m2n3方法思考:综合运用化质数、逆用公式和整体代人的方法。问题8、已知a=244,b=333,c=422,比较a、b、c的大小。思路探索:同底数幂比较大小观察指数大小即可,底数不能变相同的,只好逆用公式将指数变相同,比较底数大小了。简解:a=244=2411=(24)11=1611, b=333=3311=(33)11=2711 c=422=4211=1611 a=cb方法思考:化同指数冪是比较底数不能化相同的冪的又一种方法。思考归纳:幂的运算首先要熟练掌握幂的四条基本性质,不但会直接套用公式,还要能逆用。其次要注意要求的代数式与已知条件的联系,没明显关系时常常逆用公式将其分解。第三,底数是常数时通常将其化成质数积的乘方的形式,有常数指数的通常求出其值,作为该项的系数。第四,底数不同而指数可变相同的可通过比较底数确定其大小关系,还可通过积的乘方的逆运算相乘。思考原则可用公式套一套,整体不同靠一靠,逆用公式倒一倒,常数底数造一造,系数质数和指数,综合运用瞧一瞧。我的大学爱情观目录:15 大学概念16 分析爱情健康观17 爱情观要三思18 大学需要对爱情要认识和理解19 总结1、什么是大学爱情:大学是一个相对宽松,时间自由,自己支配的环境,也正因为这样,培植爱情之花最肥沃的土地。大学生恋爱一直是大学校园的热门话题,恋爱和学业也就自然成为了大学生在校期间面对的两个主要问题。恋爱关系处理得好、正确,健康,可以成为学习和事业的催化剂,使人学习努力、成绩上升;恋爱关系处理的不当,不健康,可能分散精力、浪费时间、情绪波动、成绩下降。因此,大学生的恋爱观必须树立在健康之上,并且树立正确的恋爱观是十分有必要的。因此我从下面几方面谈谈自己的对大学爱情观。2、什么是健康的爱情:2、 尊重对方,不显示对爱情的占有欲,不把爱情放第一位,不痴情过分;3、 理解对方,互相关心,互相支持,互相鼓励,并以对方的幸福为自己的满足; 4、 是彼此独立的前提下结合;3、什么是不健康的爱情:1)盲目的约会,忽视了学业;2)过于痴情,一味地要求对方表露爱的情怀,这种爱情常有病态的夸张;3)缺乏体贴怜爱之心,只表现自己强烈的占有欲;4)偏重于外表的追求;4、大学生处理两人的在爱情观需要三思:二、 不影响学习:大学恋爱可以说是一种必要的经历,学习是大学的基本和主要任务,这两者之间有错综复杂的关系,有的学生因为爱情,过分的忽视了学习,把感情放在第一位;学习的时候就认真的去学,不要去想爱情中的事,谈恋爱的时候用心去谈,也可以交流下学习,互相鼓励,共同进步。三、 有足够的精力:大学生活,说忙也会很忙,但说轻松也是相对会轻松的!大学生恋爱必须合理安排自身的精力,忙于学习的同时不能因为感情的事情分心,不能在学习期间,放弃学习而去谈感情,把握合理的精力,分配好学习和感情。9. 有合理的时间;大学时间可以分为学习和生活时间,合理把握好学习时间和生活时间的“度”很重要;学习的时候,不能分配学习时间去安排两人的在一起的事情,应该以学习为第一;生活时间,两人可以相互谈谈恋爱,用心去谈,也可以交流下学习,互相鼓励,共同进步。5、大学生对爱情需要认识与理解,主要涉及到以下几个方面:2. 明确学生的主要任务“放弃时间的人,时间也会放弃他。”大学时代是吸纳知识、增长才干的时期。作为当代大学生,要认识到现在的任务是学习学习做人、学习知识、学习为人民服务的本领。在校大学生要集中精力,投入到学习和社会实践中,而不是因把过多的精力、时间用于谈情说爱浪费宝贵的青春年华。因此,明确自己的目标,规划自己的学习道路,合理分配好学习和恋爱的地位。3. 树林正确的恋爱观提倡志同道合、有默契、相互喜欢的爱情:在恋人的选择上最重要的条件应该是志同道合,思想品德、事业理想和生活情趣等大体一致。摆正爱情与学习、事业的关系:大学生应该把学习、事业放在首位,摆正爱情与学习、事业的关系,不能把宝贵的大学时间,锻炼自身的时间都用于谈情说有爱而放松了学习。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合作协议委托合同样本
- 2025至2031年中国有机玻璃化妆品座行业投资前景及策略咨询研究报告
- 天津工艺美术职业学院《数据采集与清洗课程设计》2023-2024学年第二学期期末试卷
- 辽宁商贸职业学院《代码安全机制与实现技术》2023-2024学年第二学期期末试卷
- 深圳北理莫斯科大学《城市规划原理B》2023-2024学年第一学期期末试卷
- 《人力资源经理工作成果展示》课件
- 社区家长学校家庭教育
- 2025智能家居安防系统安装合同书
- 2025至2030年中国车载式LED电子显示屏数据监测研究报告
- 2025至2030年中国美式沾塑钢丝钳数据监测研究报告
- 山东省威海市乳山市银滩高级中学2024-2025学年高一下学期4月月考地理试题(原卷版+解析版)
- 信息技术在商业中的应用研究试题及答案
- 2025年湖南省中考数学模拟试卷(一)(原卷版+解析版)
- 大学生职业规划学习通超星期末考试答案章节答案2024年
- 2024年自考《14269数字影像设计与制作》考试复习题库(含答案)
- 2024年《13464电脑动画》自考复习题库(含答案)
- 初中班会 国家安全青春挺膺 课件
- 成都体育学院全日制学术型硕士学位研究生培养方案
- 设计交底记录文稿(示例)
- 方向控制回路A
- 望城县茶亭镇土地利用总体规划
评论
0/150
提交评论