




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常用逻辑用语同步训练一、基础知识:知识点一:命题1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真 命题(3) 命题“”的真假判定方式: 若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。如:一定推出. 若要判断命题“”是一个假命题,只需要找到一个反例即可.2. 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.(2)复合命题的构成形式: p或q;p且q;非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真假真真真假假真假假真真真假假假真假假 当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”; 当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。 “非p”与p的真假相反.注意:(1)逻辑 连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立, 二是p不成立但q成立 ,三是p成立且q也成立。可以类比于集合中“或”.(2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”; “p且q” 的否定是“p或q”.(3) 对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。典型例题例1判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由。(1)矩形难道不是平行四边形吗?(不是)(2)垂直于同一条直线的两条直线必平行吗?(不是)(3)若2a+40,则a-2. (是)(4) (不是)(5)平行四边形的两组对边分别平行。(是)例2、下列命题是真命题的为( A ) A若,则 B若,则 C若,则 D若,则 例3、已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的 ( D )A B C D例4、若是真命题,是假命题,则( D )(A)是真命题 (B)是假命题 (C)是真命题 (D)是真命题知识点二:四种命题1. 四种命题的形式: 用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为:原命题:若p则q; 逆命题:若q则p;否命题:若p则q; 逆否命题:若q则p.2. 四种命题的关系:原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径. 除、之外,四种命题中其它两个命题的真伪无必然联系.典型例题例5写出“若或,则”的逆命题、否命题、逆否命题及命题的否定,并判其真假。解: 逆命题:若,则或,是真命题; 否命题:若且,则,是真命题; 逆否命题:若,则且,是真命题。 命题的否定:若或,则,是假命题。例6. 写出命题“已知是实数,若ab=0,则a=0或b=0”的逆命题,否命题,逆否命题,并判断其真假。解析: 逆命题:已知是实数,若a=0或b=0, 则ab=0, 真命题; 否命题:已知是实数,若ab0,则a0且b0,真命题; 逆否命题:已知是实数,若a0且b0,则ab0,真命题。知识点三:充分条件与必要条件:1. 定义:对于“若p则q”形式的命题:若pq,则p是q的充分条件,q是p的必要条件;若pq,但qp,则p是q的充分不必要条件,q是p的必要不充分条件;若既有pq,又有qp,记作pq,则p 是q的充分必要条件(充要条件).2. 理解认知:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论 推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“反过来也成立”等均为充要条件的同义词语.3. 判断命题充要条件的三种方法(1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断即利用与;与;与的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3) 利用集合间的包含关系判断,比如AB可判断为AB;A=B可判断为AB,且BA,即AB.如图:“”“,且”是的充分不必要条件.“”“”是的充分必要条件. 典型例题例7、下列选项中,p是q的必要不充分条件的是 ( A ) (A)p: b+d , q: b且cd (B)p: a1,b1 q: 的图像不过第二象限 (C)p: x=1, q: (D)p: a1, q: 在上为增函数例8使成立的充分而不必要的条件是 ( A ) (A) (B) (C) (D)例9若aR,则“a=1”是“|a|=1”的( A )A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分又不必要条件例10、“|X|=|Y|”是“X=Y”的 ( A ) A必要不充分条件 B充分不必要条件 C充要条件 D既不充分也不必要条件知识点四:全称量词与存在量词:1. 全称量词与存在量词:(I) 全称量词及表示:表示全体的量词称为全称量词。表示形式为“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。含有全称量词的命题,叫做全称命题。全称命题“对M中任意一个x,有p(x)成立”可表示为,其中M为给定的集合,p(x)是关于x的命题.(II)存在量词及表示:表示部分的量称为存在量词。表示形式为“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。含有存在量词的命题,叫做特称命题特称命题“存在M中的一个x,使p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.2. 对含有一个量词的命题进行否定:(I)对含有一个量词的全称命题的否定全称命题p:,他的否定: 全称命题的否定是特称命题。(II)对含有一个量词的特称命题的否定 特称命题p:,他的否定: 特称命题的否定是全称命题。注意:(1)命题的否定与命题的否命题是不同的.命题的否定只对命题的结论进行否定(否定一次),而命题的否命题则需要对命题的条件和结论同时进行否定(否定二次)。(2)一些常见的词的否定:正面词等于大于小于是都是一定是至少一个至多一个否定词不等于不大于不小于不是不都是一定不是一个也没有至少两个典型例题例11已知命题:,那么命题为 ( C )A, B, C, D,例12已知命题 ,那么命题为 ( B ) A B C D例13下列命题中的真命题是 ( D )A使得 B C使得 D 例14已知命题:,那么下列结论正确的是 ( B ) A, B,C, D,知识点五:求参数的取值范围:例15.已知p:,q:,若p是q的一个充分不必要条件,求m的取值范围.例16命题p:关于x的不等式对任意恒成立; 命题q:函数在R上递增。若为真,而为假,求实数的取值范围。二、题型分析题型一:命题、真命题、假命题的判断例1:下列语句是命题的是 (A)A梯形是四边形B作直线AB Cx是整数 D今天会下雪吗例2下列说法正确的是 (B)A命题“直角相等”的条件和结论分别是“直角”和“相等”B语句“最高气温30 时我就开空调”不是命题C命题“对角线互相垂直的四边形是菱形”是真命题D语句“当a4时,方程x24xa0有实根”是假命题变式练习:下列命题是真命题的是 (D)A是空集 B.是无限集C是有理数 Dx25x0的根是自然数题型二:复合命题的结构例3将下列命题改写成“若p,则q”的形式,并判断命题的真假:(1)6是12和18的公约数; (真)(2)当a1时,方程ax22x10有两个不等实根;(真)(3)已知x、y为非零自然数,当yx2时,y4,x2. (假)变式练习:指出下列命题的条件p与结论q,并判断命题的真假:(1)若整数a是偶数,则a能被2整除; (真)(2)对角线相等且互相平分的四边形是矩形;(假)(3)相等的两个角的正切值相等(假)题型三:命题真假判断中求参数范围例4、已知p:x2mx10有两个不等的负根,q:方程4x24(m2)x10(mR)无实根,求使p为真命题且q也为真命题的m的取值范围题型四:四种命题的等价关系及真假判断例5命题“若ABC有一内角为,则ABC的三内角成等差数列”的逆命题 (D)A与原命题同为假命题 B与原命题的否命题同为假命题C与原命题的逆否命题同为假命题 D与原命题同为真命题例6命题“若f(x)是奇函数,则f(x)是奇函数”的否命题是 (B)A若f(x)是偶函数,则f(x)是偶函数 B若f(x)不是奇函数,则f(x)不是奇函数C若f(x)是奇函数,则f(x)是奇函数 D若f(x)不是奇函数,则f(x)不是奇函数例7若“xy,则x2y2”的逆否命题是 (C) A若xy,则x2y2 B若xy,则x2y2 C若x2y2,则xy D若xy,则x2y2例8给出下列命题:命题“若b24acb0,则0”的逆否命题;“若m1,则mx22(m1)x(m3)0的解集为R”的逆命题其中真命题的序号为_变式练习若命题p的逆命题是q,命题q的否命题是r,则p是r的 (B )A逆命题 B逆否命题 C否命题 D以上判断都不对题型五:问题的逆否证法例9判断命题“若m0,则方程x22x3m0有实数根”的逆否命题的真假题型六:判断条件关系及求参数范围例10“x2k(kZ)”是“tan x1”成立的 ()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件例11、设A是B的充分不必要条件,C是B的必要不充分条件,D是C的充要条件,则D是A的 ()A 充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件例12、已知命题:方程有两个不等的负根,命题:无实根,若或为真命题,且为假命题,求实数的取值范围. 解析:由已知可知,解得,解得 .4分或为真,且为假为真,为假,或为真,为假,即或,.8分解得或,综上,实数的取值范围是或. .12分变式练习1:已知条件:p:ylg(x22x3)的定义域,条件q:5x6x2,则q是p的 ()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件变式练习2: 已知p:x1,q:axa1,若p的必要不充分条件是q,求实数a的取值范围题型七、充要条件的论证例13.求证:0a0对一切实数x都成立的充要条件题型八、命题真假值的判断例14如果命题“pq”与命题“非p”都是真命题,那么 ()A命题p不一定是假命题 B命题q一定为真命题C命题q不一定是真命题 D命题p与命题q的真假相同变式练习:判断由下列命题构成的pq,pq,非p形式的命题的真假:(1)p:负数的平方是正数,q:有理数是实数;(2)p:23,q:32;(3)p:35是5的倍数,q:41是7的倍数题型九、命题的否定与否命题例15命题“若ab,则2a3”的否定是_题型十、全称命题与特称命题相关小综合题例17若命题p:xR,ax24xa2x21是真命题,则实数a的取值范围是 () Aa3或a2 Ba2 Ca2 D2a0,则命题“p且q”是_命题(填“真”或“假”)变式练习2: 已知命题p:xR,使tan x1,命题q:x23x20的解集是x|1x2,下列结论:命题“pq”是真命题;命题“pq”是假命题;命题“pq”是真命题;命题“pq”是假命题,其中正确的是() A B C D题型十一、综合训练典型题例18设命题p:实数x满足x24ax3a20,命题q:实数x满足(1)若a1,且pq为真,求实数x的取值范围;(2)非p是非q的充分不必要条件,求实数a的取值范围 变式练习1:已知命题p:函数yx22(a2a)xa42a3在2,)上单调递增q:关于x的不等式ax2ax10解集为R.若pq假,pq真,求实数a的取值范围课后作业1.若非空集合满足,且不是的子集,则 ( )A.“”是“”的充分条件但不是必要条件B.“”是“”的必要条件但不是充分条件C.“”是“”的充要条件D.“”既不是“”的充分条件也不是“”必要条件 答案 B2.“成立”是“成立”的( )A充分不必要条件B.必要不充分条件C充分必要条件 D.既不充分也不必要条件答案 B3. 设,是定义在R上的函数,则“,均为偶函数”是“为偶函数”的( )A充要条件 B充分而不必要的条件C必要而不充分的条件 D既不充分也不必要的条件 答案 B4.:,则( ) A. B.C. D.答案 C 5. 命题:“若,则”的逆否命题是 ( ) A.若,则 B.若,则C.若,则 D.若,则 答案 D6.命题“对任意的”的否定是 ( )A.不存在 B.存在C.存在 D.对任意的 答案 C7.设集合,那么“”是“”的 ( )A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件答案 B8.设p:xx200,q:0x5或x4,q:0x2或1x2,借助图形知选A.9. “m=”是“直线(m+2)x+3my+1=0与直线(m2)x+(m+2)y3=0相互垂直”的 ( )A.充分必要条件 B.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通安全培训材料
- 全面预算管理培训教材
- 2024年中考数学真题分类汇编(全国):专题28 几何综合压轴题(29题)(教师版)
- 房产转让合同协议书范本
- 软件开发项目外包合同书
- 不锈钢栏杆采购合同
- 教学培训演讲
- 设备采购合同转让及交接协议书
- 小学数学青岛版(2024)四年级下册八 我锻炼 我健康-平均数教案设计
- 上海商业租赁合同全文
- 个人分期还款协议书模板(5篇)
- 仪表电气专业安全检查表
- 《起重行车安全操作培训》ppt
- (完整版)译林英语四年级下知识点及语法汇总
- 急性阑尾炎护理查房ppt
- 苏教版五年级数学下册第四单元易错题梳理和重难提升(含答案)
- 西安市绿化养护管理标准
- 一只猫的生命哲学The Zen of Cat(中英文)
- 中外酒店财务管理比较研究2
- 《电子商务基础》试题全库
- BD-Ⅱ安装使用说明书_博睿10-08-17
评论
0/150
提交评论