




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优选法与试验 设计初步 简 介 普通高中课程标准实验教科书 选修4-7 优选法是合理地安排试验以求迅速 找到最佳点的数学方法。试验设计也 是一种数学方法,一般来说,它是考 虑在多因素情况下安排试验的方法, 它可以帮助人们通过较少的试验次数 得到较好的因素组合,形成较好的设 计方案。 本专题将结合具体实例,初步 地介绍单因素、双因素的优选法 和多因素的正交试验设计方法, 并对方法给予简单的说明,帮助 学生理解这些方法的基本思想, 并能思考和解决一些简单的实际 问题。 内容与要求 1.通过丰富的生活、生产案例,使学生感受在现实 生活中存在着大量的优选问题。 2.通过分析和解决具体实际问题,使学生掌握分数 法、0.618法及其适用范围,可以利用计算机(或 计算器)进行试验,并能思考和尝试运用这些方法 解决一些实际问题,体会优选的思想方法。 3.了解斐波那契数列Fn,理解在试验次数确定的情 况下分数发最佳性的证明,通过连分数知道 Fn-1/Fn和黄金分割的关系。 4.通过一些具体的实例,使学生知道对分法、爬山 法、分批试验法,以及目标函数为多峰情况下的处 理方法。 5.通过丰富的实例,了解多因素优选问题,了解处 理双因素问题的一些优选方法,进一步体会优选的 思想方法。 内容与要求 6.通过丰富的生活、生产案例,使学生感受在 现实生活中存在着大量的试验设计问题。 7.通过对具体案例(因素不超过3,水平不超 过4)的分析,理解运用正交试验设计方法 解决简单问题的过程,了解正交试验的思想 和方法,并能运用这种方法思考和解决一些 简单的实际问题。 8.完成一个学习总结报告。报告应包括三方面 的内容:(1)知识的总结。对本专题的整 体结构和内容的理解,对试验设计方法及其 意义的认识。(2)拓展。通过查阅资料、 调查研究、访问求教、独立思考,对某些内 容、某些结果和应用进行拓展和深入。 (3)对本专题的感受、体会、看法。 说明与建议: 1.本专题要求学生掌握一些优选的方法, 尽管没有给予严格的数学证明,目的是 让学生理解这些方法的思想和实质。 2.作为一门应用课程,有条件的地方应让 学生用所学的方法亲自做一些试验,以 便更好地掌握这些方法。 3.使学生认识到,应根据问题的具体情况 讨论采用何种方法更为有效,并要与具 体问题的专业知识相结合。同时,要能 比较不同方法的利弊和适用范围。 优选法与试验设计初步 第一讲 优选法 第二讲 试验设计初步 优选法 第一讲 优选法 一 什么叫优选法 二 单峰函数 三 黄金分割法0.618法 四 分数法 五 其他几种常用优选法 六 多因素方法 第二讲 试验设计初步 一 正交试验设计法 二 正交试验的应用 本专题知识框架 优选法 试验设计初步 单因素 双因素 单峰情形 多峰情形 多因素正交试验设计 0.618法 分数法 对分法 纵横对折法 单峰情形 从好点出发法 平行线法 双因素盲人爬山法 分批试验法 盲人爬山法 课时分配 教学时间约为18课时,分配如下: 第一讲 优选法 约10课时 第二讲 试验设计初步 约6课时 学习总结报告 约2课时 第一讲 优选法 优选法的概念 单峰函数 黄金分割法0.618法 分数法 其他几种常用的优选法 多因素方法 教学重点与难点 重点: 单因素问题的0.618法和分数法。 难点: 1.认识0.618法和分数法的原理; 2.认识分数法的最优性。 什么叫优选法 最优化问题 为了使某些目标(如产量、质量或经济指标等)达到 最好的结果(如高产、优质、低消耗),就要找出使 此目标达到最优的有关因素(或变量)的某些值。这 类问题在数学上称为最优化问题。 近代解决最优化问题的方法,大致分为两大类: 一类是间接最优化(或称解析最优化)方法,另一类 是直接最优化(或称试验最优化)。所谓间接最优化 方法,就是要求把所研究的对象(如物理或化学过程 )用数学方程描述出来,然后再用数学解析方法求出 起最优解。对于研究对象很难用数学形式来表达,或 者表达式很复杂,只能直接通过试验,根据试验结果 的比较而求得最优解,就是直接最优化方法。 什么叫优选法 本书介绍的优选法都是直接最优化方法。它是以数 学原理为指导,用尽可能少的试验次数,迅速求得 最优解的方法。 在生产和科学试验中,人们为了达到优质、高产、 低消耗等目标,需要对有关因素的最佳组合(简称 最佳点)进行选择,关于最佳组合(最佳点)的选 择问题,称为选优问题。 优选法是根据生产和科学研究中的不同问题,利用 数学原理,合理安排试验,以最少的试验次数迅速 找到最佳点的科学试验方法。 20世纪60年代,著名数学家华罗庚亲自组织推广了 优选法,并在全国工业部门得到了广泛的应用,取 得了可喜的成果。 编写意图与教学建议 1.什么叫优选法 引言中的两个问题中的商品价格竞猜游戏, 蒸馒头为“什么叫优选法” 作铺垫。 主要涉及几个感念: 最佳点 优选问题 优选法 三个概念相互联系,只有了解了前面的概 念才能了解后面的概念,教科书正是以这种顺 序循序渐进地提出它们的。 编写意图与教学建议 试验一词的理解。 多举优选问题的实例,如电饭锅做米饭,蒸馒头 ,查电路断点,商品定价等,帮助学生了解优选 问题广泛存在,优选法大有用武之地,并形成对 试验的广义理解。 关于探求池塘最深点的例子,在假设“池塘底部的 高低变化犹如一个倒过来的单峰小山”的前提下, 利用双因素方法,以1m为试验区间的条件下得出 的结论。并建议在本讲第六个问题“多因素方法” 的学习中,能回顾这个问题,让学生自己讨论如 何解决它。 (二)单峰函数 炮弹飞行问题引入 这是一个有具体表达式的优选问题 图1-1图1-2 (二)单峰函数 单峰函数的定义中注意的两个要点: f(x)在a,b上只有唯一的最大(小)值点C; f(x)在a,C上递增(减),在C,b上递减(增)。 图1-3 图1-4 教学中应注意: 1.结合图像1-3对上述两点作直观解释,以帮助学生理解 它们。但不能用图像代替单峰函数定义的文字。 2.在给出单峰函数的定义后,要补充说明“我们规定,区 间a,b上的单调(递增或递减)函数也是单峰函数。”需 要指出:这样的函数的最大(最小)值点是区间端点。 (二)单峰函数 建议教学中能结合例子说明单因素问题、目标函 数等概念,使学生能认识它们的意义。 “若目标函数为单峰函数,则最佳点与好点必在 差点的同侧”,这是缩小试验范围时,保留好点 所在部分的重要理论根据。可以通过单峰函数的 图像认识外,还可以利用单峰函数定义,根据函 数的单调性加以证明。 (1) (2) 图1-4 (三)黄金分割法0.618法 黄金分割数的导出 教材举例说明试验效率的问题,并配了图1-5. 图1-5 为了合理选取试验点,需要注意两点: 每次要进行比较的两个试验点,应关于相应试验区 间的中心对称; 每次舍去的区间占舍去前的区间长度的比例数应为 相同。 (三)黄金分割法0.618法 根据上面的两个原则,得出应满足 (b-x1)/(b-a)=(x1-x2)/(x1-a) 图1-6 图1-7 教科书是对一般的情况进行推导,为了简单起 见,可以假设试验区间为0,1. (1-x)/1=(2x-1)/x,即x2+x-1=0,得x=0.618. (三)黄金分割法0.618法 案例 炼钢时通过加入含有特定化学元素的材料, 使炼出来的钢满足一定的指标要求。假设为了炼出 某种特定用途的钢,每吨需要加入某些元素的量在 1000g到2000g之间,问如何通过试验的方法找到它 的最优加入量。 用折纸的方法,可以简化计算过程,这样做是使用 几何操作方法来保证以下两点: 每次要进行比较的两个试验点,应关于相应试验区间的 中心对称; 每次社区的区间长占舍去钱的区间长的比例数应相同。 (三)黄金分割法0.618法 试验点的选取: x1=小+0.618 (大小); x2=小+大x1。 一般:xn=小+大xm。 概括为“加两头,减中间”,教学中应注意使学生理解“ 加两头,减中间”的确切含义。 这部分内容,教学除教师讲解和演示外,还应带领学生 实际操作,使其在了解做法依据的道理的基础上熟悉操 作过程。 (三)黄金分割法0.618法 如果两次试验结果一样,在一般情况下,仅保 留中间范围,会不会划去最佳点呢?这个问题 可以引导学生根据单峰函数的定义找出答案。 精度的讨论把有关不等式、指数、对数的知识 与0.618法结合起来,教学中可以让学生对这个 问题进行自主探究。 “阅读材料 黄金分割研究史”拓展性学习的材料 ,可以供学生自学,也可以在教学中将其中一 些内容穿插与讲授之中,以丰富教学内容,传 播数学文化。 (四)分数法 案例1 在配置某种清洗液时,需要加入 某中材料。经验表明,加入量大于130ml 肯定不好。用150ml的锥形量杯计量加入 量,该量杯的量程分为15格,每个代表 10ml。用试验法找出这种材料的最优加 入量。 两个目的: 0.618法不能用于一切优选问题; 结合具体问题介绍分数法。 (四)分数法 渐进分数列:1/2,2/3,3/5,5/8,8/13, Fn/Fn+1, 案例1中设计连分数与斐波那契数列,应注意教材中连分 数的表达式(2)与数列(3)之间的联系。教学中不要 对连分数与斐波那契数列进行过多的引申介绍和讨论, 够用即可,而要以介绍分数法本身为重点,注意斐波那 契数列的表示,第一项为F0,是为了后面“做k次试验时 用Fk/Fk+1代替0.618,其精度为1/Fk+1 ”的表述。 除了以分数代替黄金分割常数外,分数法和0.618法并无 其他不同,第一点确定后,后续试点口可以用“加两头, 减中间”的方法来确定。 案例1对试验范围的划分恰好与斐波那契数有关的类型, 试验范围恰好为13项,于是可以直接用F5/F6代替0.618. 案例2代表了另一种类型,通过调整试点的个数来选择代 替0.618的近似分数,是在案例1基础上的拓展。 (四)分数法 分数法最优性(在单峰函数的前提下) 通过n次试验,最多能从( Fn+11)个试验点 中保证找出最佳点; 只有用分数法才能通过n次试验保证从( Fn+1 1 )个试点中找出最佳点。 上两结论可以推出分数法的最优性,即寻找 单峰函数的最佳点时,用分数法安排试验最 节约试验次数。 教学中要介绍这些结论,让学生认识到分数 法最优性的含义,并能初步了解它的推导原 理。但不需要进行具体的证明,详细证明可 见附录二。 (五)其他几种常见的优选法 1.对分法 案例1 查找输电线路故障 类比二分法 教学中应结合具体案例,强调这种操作比较 简单,选试点的方法是单一的选取中点。这 一类试验问题的特点是有已知的试验标准, 且能根据一次试验的结果确定下次试验的选 择方向。 (五)其他几种常见的优选法 案例2 价格竞猜,建议教学 中让学生独立地分析此案例 ,然后进行讨论交流。 馒头放碱量。 (五)其他几种常见的优选法 2.盲人爬山法 一种采用小步调整策略的优选 法,其依据的原理就是“单峰 函数的最佳点与好点在差点的 同侧”。 教学中介绍这种方法时,应注 意结合能表示上述原理的单峰 函数的图像,借图说话,使学 生感受到它的合理性。 (五)其他几种常见的优选法 3.分批试验法 均分分批试验法 第一批 第二批 比例分割分批试验法 第一批 第二批 (五)其他几种常见的优选法 4.多峰的情形 多峰情形不是教学的重点,而是对 单峰情形的进一步拓展。教学中应 重在使学生认识到化多峰为单峰是 解决多峰问题的基本思路。 (六)多因素方法 1.纵横对折法 2.从好点出发法 3.平行线法 4.平行线加速法 5.双因素盲人爬山法 (六)多因素方法 教科书介绍双因素问题的方法,主要是 让学生体会以下双因素问题的一些优选 法,进一步体会优选的思想方法。 教科书对双因素的单峰性只是通过形象 的说法给予介绍,没有给出严格的数学 定义 。 教科书没有讨论在舍弃区间时,不会把 最佳点所在区域舍弃。教学中可以给予 补充解析。 第二讲 试验设计初步 正交表 介绍 正交试 验设计 正交试验 的应用 确定试验的因素和水平 选择合适的正交表 安排试验方案 试验结果分析,选出最佳组合 正交表 的特征 什么叫试验设计? 试验设计又叫实验设计,是数 理统计学的一个分支,研究如 何制定试验方案,以提高试验 效率,缩小随机误差的影响, 并使试验结果能有效进行统计 分析的理论与方法。 为什么要试验设计 案例 玉米的产量 因素:种植密度A、施化肥量B、施肥时间 、浇水量D. 试验次数: A3,B3,C3,D3:34=81 A4,B4,C4,D4:44=256 A10,B10,C10,D10:104=10000 随机因素影响 任何一个试验问题涉及两个方面: 试验的设计和数据的分析。 这两个方面紧密相连,设计时要考虑 到下一步如何进行数据分析。 试验设计的历史 费歇尔作物收成变动研究, 罗森斯特农业实业站 试验设计的主要方法 早期:区组设计、拉丁方设计、尤 登设计 当今:正交试验设计、回归设计、 混料设计、参数设计和均匀设计 正交试验设计 正交试验设计是用正交表安排多因素的 试验设计和分析的一种方法。由于它操 作方便、设计简单,已成为多因素场合 下进行试验设计的首选方法之一。 正交试验设计的步骤 1. 确定试验的因素和水平 2. 选择合适正交表 3. 安排试验方案 4. 分析试验结果 确定试验的因素和水平 引入试验设计的必要性。 案例1 某工产品的产量受到温度A、反应时间B和催 化剂浓度C三个因素的影响。在具体生产过程中, 根据经验,温度、反应时间及催化剂浓度分别可以 取两个水平: 温度:A1=80,A2=90 ; 反应时间:B1=1h,B2=2h; 催化剂浓度:C1=5%,C2=6%。 现要在上述的情况下找出产量最佳的因素组合方 案,并分析影响结果的主次因素。 选择正交表L4(23) 列号 试验号 123 1111 2122 3212 4221 安排试验方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高血压的诊断分级及护理
- 人教版新课标A必修2第四章 圆与方程4.3 空间直角坐标系教案
- 安全监管培训
- 一年级品德与生活上册 了解我们的学校教学设计2 北师大版
- 人教部编版八年级上册网络改变世界教案
- 人教部编版第二课 原始农耕生活教案设计
- 餐饮盘点流程培训
- 2024中国移动河北公司春季校园招聘笔试参考题库附带答案详解
- 利用周长解决问题(教学设计)-2024-2025学年数学三年级上册人教版
- 工作票签发人培训
- 论汉语言文学在生活中的作用
- 20KV及以下配电网工程建设预算编制与计算规定
- 四年级艺术测评美术素养考试试题
- 电动吸引器吸痰操作流程
- 器官移植专科护士理论考核试题及答案
- 《老师水缸破了》
- 冀教版五年级数学下册教学课件 第四单元 分数乘法第2课时 简便运算
- 是谁杀死了周日
- 碧螺春的主要制作工艺
- S-71200自动混合液体机控制系统毕业设计论文
- 学弈 全国公开课一等奖
评论
0/150
提交评论