高中数学 第二章 统计 2_3 变量间的相关关系学案 新人教a版必修3_第1页
高中数学 第二章 统计 2_3 变量间的相关关系学案 新人教a版必修3_第2页
高中数学 第二章 统计 2_3 变量间的相关关系学案 新人教a版必修3_第3页
高中数学 第二章 统计 2_3 变量间的相关关系学案 新人教a版必修3_第4页
高中数学 第二章 统计 2_3 变量间的相关关系学案 新人教a版必修3_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3 变量间的相关关系学习目标1.理解两个变量的相关关系的概念.2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.3.会求线性回归方程知识点一变量间的相关关系1变量之间常见的关系函数关系变量之间的关系可以用函数表示相关关系变量之间有一定的联系,但不能完全用函数表示2.相关关系与函数关系的区别与联系类别区别联系函数关系函数关系中两个变量间是一种确定性关系;函数是一种因果关系,有这样的因,必有这样的果例如,圆的半径由1增大为2,其面积必然由增大到4在一定的条件下可以相互转化,对于具有线性相关关系的两个变量来说,当求得其线性回归方程后,可以用一种确定性的关系对这两个变量间的取值进行评估;相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况相关关系相关关系是一种非确定性关系例如,吸烟与患肺癌之间的关系,两者之间虽然没有确定的函数关系,但吸烟多的人患肺癌的风险会大幅增加,两者之间即是一种非确定性的关系;相关关系不一定是因果关系,也可能是伴随关系知识点二散点图及正、负相关的概念1散点图将样本中n个数据点(xi,yi)(i1,2,n)描在平面直角坐标系中,以表示具有相关关系的两个变量的一组数据的图形叫做散点图2正相关与负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域(2)负相关:散点图中的点散布在从左上角到右下角的区域思考任意两个统计数据是否均可以作出散点图?答可以,不管这两个统计量是否具备相关性,以一个变量值作为横坐标,另一个作为纵坐标,均可画出它的散点图知识点三回归直线1回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线2回归方程与最小二乘法我们用yii来刻画实际观察值yi(i1,2,n)与i的偏离程度,yii越小,偏离越小,直线就越贴近已知点我们希望yii的n个差构成的总的差量越小越好,这才说明所找的直线是最贴近已知点的由于把yii这个差量作和会使差量中的正负值相互抵消,因此我们用这些差量的平方和即Qyiabxi)2作为总差量,回归直线就是所有直线中Q取最小值的那一条这种使“差量平方和最小”的方法叫做最小二乘法用最小二乘法求回归方程中的,有下面的公式:其中i,i.这样,回归方程的斜率为,纵截距为,即回归方程为x.思考任何一组数据都可以由最小二乘法得出回归方程吗?答用最小二乘法求回归方程的前提是先判断所给数据具有线性相关关系(可利用散点图来判断),否则求出的回归方程是无意义的题型一变量间相关关系的判断例1在下列两个变量的关系中,哪些是相关关系?正方形边长与面积之间的关系;作文水平与课外阅读量之间的关系;人的身高与年龄之间的关系;降雪量与交通事故的发生率之间的关系解两变量之间的关系有两种:函数关系与带有随机性的相关关系正方形的边长与面积之间的关系是函数关系作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系降雪量与交通事故的发生率之间具有相关关系综上,中的两个变量具有相关关系反思与感悟函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系跟踪训练1下列两个变量间的关系不是函数关系的是()A正方体的棱长与体积B角的度数与它的正弦值C单产为常数时,土地面积与粮食总产量D日照时间与水稻的单位产量答案D解析函数关系与相关关系都是指两个变量之间的关系,但是这两种关系是不同的,函数关系是指当自变量一定时,函数值是确定的,是一种确定性的关系因为A项Va3,B项ysin,C项yax(a0,且a为常数),所以这三项均是函数关系D项是相关关系题型二散点图例25名学生的数学和物理成绩(单位:分)如下:学生成绩ABCDE数学成绩8075706560物理成绩7066686462判断它们是否具有线性相关关系解以x轴表示数学成绩,y轴表示物理成绩,得相应的散点图如图所示由散点图可知,各点分布在一条直线附近,故两者之间具有线性相关关系反思与感悟1.判断两个变量x和y间具有哪种相关关系,最简便的方法是绘制散点图变量之间可能是线性的,也可能是非线性的(如二次函数),还可能不相关2画散点图时应注意合理选择单位长度,避免图形过大或偏小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论跟踪训练2对变量x,y有观测数据(xi,yi)(i1,2,10),得散点图;对变量u,v有观测数据(ui,vi)(i1,2,10),得散点图.由这两个散点图可以判断()A变量x与y正相关,u与v正相关B变量x与y正相关,u与v负相关C变量x与y负相关,u与v正相关D变量x与y负相关,u与v负相关答案C题型三求回归直线的方程例3某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求回归方程解(1)散点图如图所示(2)列出下表,并用科学计算器进行有关计算.i12345xi24568yi3040605070xiyi60160300300560x4162536645,50,145,iyi1380于是可得,6.5,506.5517.5.于是所求的回归方程是6.5x17.5.反思与感悟1.求回归方程的步骤(1)列表xi,yi,xiyi.(2)计算,iyi.(3)代入公式计算,的值(4)写出回归方程x.2回归方程的理解:(1)两个变量具有线性相关性,若题目没有说明相关性,则必须对两个变量进行相关性判断(2)回归系数0,则变量正相关;0,则变量负相关跟踪训练3如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图:(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量参考数据:i9.32,iyi40.17,0.55,2.646.参考公式:相关系数r,回归方程t中斜率和截距最小二乘估计公式分别为,.解(1)由折线图中数据和附注中参考数据得4,(ti)228,0.55,(ti)(yi)iyii40.1749.322.89,r0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系(2)由1.331及(1)得0.103.1.3310.10340.92.所以y关于t的回归方程为0.920.10t.将2016年对应的t9代入回归方程得0.920.1091.82.所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨数形结合思想例4以下是在某地搜集到的不同楼盘房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x11511080135105销售价格y49.643.238.858.444判断房屋的销售价格和房屋面积之间是否具有线性相关关系如果有线性相关关系,是正相关还是负相关?分析作出散点图,利用散点图进行判断解数据对应的散点图如图所示通过以上数据对应的散点图可以判断,房屋的销售价格和房屋面积之间具有线性相关关系,且是正相关解后反思判断两个变量x和y是否具有线性相关关系,常用的简便方法就是绘制散点图如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就具有线性相关关系注意不要受个别点的位置的影响1炼钢时钢水的含碳量与冶炼时间有()A确定性关系B相关关系C函数关系D无任何关系答案B解析炼钢时钢水的含碳量除了与冶炼时间有关外,还受冶炼温度等的影响,故为相关关系2设有一个回归方程为1.5x2,则变量x增加一个单位时()Ay平均增加1.5个单位By平均增加2个单位Cy平均减少1.5个单位Dy平均减少2个单位答案C解析两个变量线性负相关,变量x增加一个单位,y平均减少1.5个单位3某商品的销售量y(单位:件)与销售价格x(单位:元/件)负相关,则其回归方程可能是()A.10x200B.10x200C.10x200D.10x200答案A解析结合图象(图略),知选项B,D为正相关,选项C不符合实际意义,只有选项A正确4设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重必为58.79kg答案D解析当x170时,0.8517085.7158.79,体重的估计值为58.79kg.5正常情况下,年龄在18岁到38岁的人,体重y(kg)对身高x(cm)的回归方程为0.72x58.2,张明同学(20岁)身高178cm,他的体重应该在_kg左右答案69.96解析用回归方程对身高为178cm的人的体重进行预测,当x178时,0.7217858.269.96(kg)1.判断变量之间有无相关关系,简便可行的方法就是绘制散点图根据散点图,可看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关2求回归直线的方程时应注意的问题(1)知道x与y呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验如果两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论