




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11椭圆及其标准方程学习目标1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形知识点一椭圆的定义思考1给你两个图钉、一根无弹性的细绳、一张纸板能画出椭圆吗?思考2在上述画出椭圆的过程中,你能说出笔尖(动点)满足的几何条件吗?梳理把平面内到两个定点F1,F2的距离之和等于_的点的集合叫作椭圆,这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距知识点二椭圆的标准方程思考1椭圆方程中,a、b以及参数c有什么几何意义,它们满足什么关系?思考2椭圆定义中,为什么要限制常数|PF1|PF2|2a|F1F2|?梳理焦点在x轴上焦点在y轴上标准方程1(ab0)1(ab0)图形焦点坐标a,b,c的关系类型一求椭圆的标准方程命题角度1焦点位置已知求椭圆的方程例1求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,ab21,c;(2)经过点(3,),且与椭圆1有共同的焦点反思与感悟用待定系数法求椭圆的标准方程的基本思路:首先根据焦点的位置设出椭圆的方程,然后根据条件建立关于待定系数的方程(组),再解方程(组)求出待定系数,最后写出椭圆的标准方程跟踪训练1求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(0,2),(0,2),并且椭圆经过点(,);(2)焦点在x轴上,且经过两个点(2,0)和(0,1)命题角度2焦点位置未知求椭圆的方程例2求经过(2,)和两点的椭圆的标准方程反思与感悟如果不能确定焦点的位置,那么求椭圆的标准方程有以下两种方法:一是分类讨论,分别就焦点在x轴上和焦点在y轴上设出椭圆的标准方程,再解答;二是设出椭圆的一般方程Ax2By21(A0,B0,AB),再解答跟踪训练2求经过A(0,2)和B(,)两点的椭圆的标准方程类型二椭圆方程中参数的取值范围例3“方程1表示焦点在y轴上的椭圆”的充分不必要条件是()A1m B1m2C2m3 D1mn0”是“方程mx2ny21表示焦点在y轴上的椭圆”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件4已知椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为2,则此椭圆的标准方程为_5已知椭圆1上一点P与椭圆两焦点F1、F2的连线夹角为直角,则|PF1|PF2|_.1平面内到两定点F1,F2的距离之和为常数,即|MF1|MF2|2a,当2a|F1F2|时,轨迹是椭圆;当2a|F1F2|时,轨迹是线段F1F2;当2a0,B0,AB)求解,避免了分类讨论,达到了简化运算的目的答案精析问题导学知识点一思考1固定两个图钉,绳长大于图钉间的距离是画出椭圆的关键思考2笔尖(动点)到两定点(绳端点的固定点)的距离之和始终等于绳长梳理常数(大于|F1F2|)知识点二思考1椭圆方程中,a表示椭圆上的点M到两焦点间距离之和的一半,可借助图形帮助记忆,a、b、c(都是正数)恰构成一个直角三角形的三条边,a是斜边,c是焦距的一半a、b、c始终满足关系式a2b2c2.思考2只有当2a|F1F2|时,动点M的轨迹才是椭圆;当2a|F1F2|时,点的轨迹是线段F1F2;当2ab0)由椭圆的定义知,2a 2,即a.又c2,b2a2c26.所求椭圆的标准方程为1.(2)椭圆的焦点在x轴上,设椭圆的标准方程为1(ab0)又椭圆经过点(2,0)和(0,1),所求椭圆的标准方程为y21.例2解设椭圆的一般方程为Ax2By21(A0,B0,AB)将点(2,),代入,得解得故所求椭圆的标准方程为1.跟踪训练2解当焦点在x轴上时,可设椭圆的标准方程为1(ab0),A(0,2),B(,)在椭圆上,解得这与ab相矛盾,故应舍去当焦点在y轴上时,可设椭圆的标准方程为1(ab0),A(0,2),B(,)在椭圆上,解得椭圆的标准方程为x21,综上可知,椭圆的标准方程为x21.例3A要使方程1表示焦点在y轴上的椭圆,则m应满足解得1m2,A选项中m|1mm|1m2,故选A.跟踪训练3解x2sin y2cos 1,可化为1,由题意知解得0.的取值范围是.例4解在椭圆1中,a,b2,c1.又P在椭圆上,|PF1|PF2|2a2,由余弦定理知,|PF1|2|PF2|22|PF1|PF2|cos 30|F1F2|2(2c)24,式两边平方,得|PF1|2|PF2|22|PF1|PF2|20,得(2)|PF1|PF2|16,|PF1|PF2|16(2)SF1PF2|PF1|PF2|sin 308412.引申探究解由椭圆的定义,可得BPF2的周长为|PB|PF2|BF2|(|PF1|PF2|)(|BF1|BF2|)2a2a4a4.跟踪训练4解由已知得a2,b,所以c1.从而|F1F2|2c2.在PF1F2中,由勾股定理可得|PF2|2|PF1|2|F1F2|2,即|PF2|2|PF1|24.又由椭圆定义知|PF1|PF2|224,所以|PF2|4|PF1|.从而有(4|PF1|)2|PF1|24.解得|PF1|.所以PF1F2的面积S|PF1|F1F2|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐器批发市场的行业规范与标准考核试卷
- 生物制药进展考核试卷
- 规培外科基本操作
- 电容器电荷存储能力分析与优化考核试卷
- 焙烤食品制造的市场开拓与销售策略考核试卷
- 木材的挤出和注塑工艺考核试卷
- 电池结构设计与仿真分析考核试卷
- 有机化学原料的全球市场趋势考核试卷
- 电声器件在智能机器人清洁器中的应用考核试卷
- 杂粮加工健康食品配方设计考核试卷
- 全国统一卷试题及答案
- 矿石采购合同范本
- 2024年甘肃省烟草专卖局招聘考试真题
- 2025年龙江森工集团权属林业局有限公司招聘笔试参考题库含答案解析
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(701-800题)
- (二模)温州市2025届高三第二次适应性考试英语试卷(含答案)+听力音频+听力原文
- DeepSeek+AI组合精准赋能教师教学能力进阶实战 课件 (图片版)
- 《哈哈镜笑哈哈》名师课件2022
- 2025年纤维检验员(高级)职业技能鉴定参考试题库(含答案)
- 传统皮影戏在小学艺术教育的应用与创新实践
- 2025年国家会展中心上海有限责任公司招聘笔试参考题库含答案解析
评论
0/150
提交评论