基于BP网络的混凝土早期弹性模量的预测.doc_第1页
基于BP网络的混凝土早期弹性模量的预测.doc_第2页
基于BP网络的混凝土早期弹性模量的预测.doc_第3页
基于BP网络的混凝土早期弹性模量的预测.doc_第4页
基于BP网络的混凝土早期弹性模量的预测.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于bp网络的混凝土早期弹性模量的预测关键词:bp神经网络;混凝土;弹性模量;预测摘 要:神经网络具有很强的非线性映射功能,本文在测定混凝土早期强度的基础上利用bp神经网络对其弹性模量进行预测。重点讨论了bp神经网络的拓扑结构和修正算法。通过对检验结果进行分析比较,证明了利用bp网络能对混凝土早期的弹性模量进行精确的预测。prediction of the early elastic mould of concretebased on bp artificial neural networks abstract neural network has strong nonlinear map characters. this text utilizes bp neural network to predict its elastic mould amount on the basis of determining the early intensity of concrete. it discusses the structure and amending algorithms of bp neural networks in detail. this method has proved that utilizes the elastic mould amount that bp network can be early to the concrete to carry on accurate prediction.key words bp neural networks, elastic mould amount of the concrete, prediction一、引言混凝土是胶凝材料、水和粗、细骨料按一定比例配合、拌制成拌合物,经一定时间硬化而成的人造石材,其强度性能受龄期、水灰比、砂率、级配、水泥的标号、外加剂的性能等众多因素影响。目前对混凝土强度和弹性模量的研究多集中在28天龄期以后,而对混凝土早期(28天龄期以前)的研究较少。混凝土的早期强度和弹性模量对施工的进度和工程的可靠度有重要的影响。影响水泥混凝土早期(28天以前)强度的主要因素是时间,其早期强度和弹性模量随时间的增长而不断增大。混凝土早期强度的测定比较容易,但混凝土早期弹性模量不易测定。目前对混凝土早期强度和弹性模量的研究多用曲线模拟的方法。神经网络可以很好的进行预测,通过bp网络对混凝土的早期弹性模量进行预测可以解决混凝土的早期弹性模量不易测定的问题。二、人工神经网络(artificial neural )及bp网络(一)人工神经网络及其特点人工神经网络(简称ann)是模拟人脑的神经细胞和神经系统,由大量的人工神经元按照一定的拓扑结构相互连续组成的分布式的并行的信息处理系统。人工神经网络信息处理的基本特征是:结构分层、功能分区、信息分布存储、并行分布处理、非线性映射、通过训练进行学习、自适应性、联想记忆功能及自动提取特征参数。它对多变量、非线性系统的数据处理具有速度快,能力强的优点。本文采用的是以rumelhart和mcclelland于1982年成立的pdp小组研究的并行分布式信息处理方法为基础,于1986年由rumelhart,hinton和williams完整而简明地提出的误差反向传播(back propagation)学习算法,简称bp算法。它系统地解决了多层网络中隐含单元连接权的学习问题。(二)bp网络及其算法bp网络目前在人工神经网络的实际应用中使用广泛,大多数神经网络模型是采用bp网络及其变化形式。下面以单隐层为例介绍bp网络的结构及算法,在实际问题中输入层与输出层单元数由问题决定,隐层层数与单元数由试算确定。如图1所示。图1 bp网络本文采用的三层bp网络基本算法如下:确定网络参数和学习步长。主要是网络隐层节点数、网络收敛极小值、和学习步长;输入层和输出层节点固定为2和1。打开样本数据文件,输入样本数据。数据初始化。学习样本数据归一化;利用随机函数使权值、阀值数据初始化,数据初始化在(0,1)之间。网络学习过程。向网络随机提供第一个学习模式对;按公式计算隐层各节点,输出层各节点输出;计算输出层、隐层的训练误差;根据误差,修改隐层到输出层的权值和阀值及输入层到隐层的权值和阀值;读取下一个学习模式对,重复步骤24直到所有学习模式对处理完;返回步骤,直至网络全局误差小于网络收敛极小值;判断是否陷入局部最小值,如是,出错处理;如否,保存权值、阈值数据。弹性模量的预测过程。打开权值、阈值数据文件; 输入待预测数据;计算隐层各节点输出;计算输出层各节点输出并保存。把输入与输出之间的非线性映射逼近问题转化为误差函数的优化问题。其中本文采用动量修改法对bp算法进行改进三、混凝土早期弹性模量的神经网络模型应用实例(一)神经网络的基本结构 图2 混凝土弹性模量预测的bp网络模型为了达到较快的收敛速度及计算精度,本文采用双隐层的前馈bp网络来建立计算混凝土弹性模量的网络模型。其结构如上图2所示:由一个输入层,两个隐层,一个输出层组成。本文选取两个参数作为输入单元:混凝土的龄期和混凝土的早期强度;隐层节点数根据最终误差最小及收敛速度快的原则进行调整;网络输出采用一个神经元。在基本数据中所有参数的取值范围见下表1,并对输入数据中龄期和混凝土的早期强度及混凝土的早期弹性模量进行标准化处理,使原始数据进入(0,1)范围内。基本参数取值范围 表1参数范围龄期(天)328混凝土的早期强度(mpa)20.842.4混凝土的早期弹性模量(gpa)31.344.5(二)网络的学习本文以文献5收集到的实验数据共52组,以其中的40组数据构成训练集,以其余的12组数据构成测试集。中间隐层通过试算选用两层,第一层12个单元,第二层10个单元,可达到较好的数据输出精度及收敛速度。在matlab6.0开发环境下编制网络程序,用网络的训练样本集见表2,在计算机上运行相应程序,用表(3)的原始数据作为测试集合,用训练的网络进行仿真,得到计算结果同列入表(3)中。在学习中,为了使网络收敛速度快且系统误差较小,本文采用了带动量项的网络修正方法,与此对应的学习速率lr=0.0010,动量系数 = 0.90,迭代次数epochs = 1000,训练误差err = 0.06,训练时间run_time = 25.765(s)。网络训练误差及迭代收敛曲线见图3。 原始训练数据 表2序号龄期 混凝土的早期强度混凝土的早期弹性模量序号龄期 混凝土的早期强度混凝土的早期弹性模量(天)(mpa)(gpa)(天)(mpa)(gpa)132333.1211437.336.52320.833.4221439.337.13328.534.7231438.637.34323.735.224143037.65326.935.5251439.138632836261436.438.47327.538.5271433.140.18333.940.6281439.738.99323.736.6291437.342.610323.831.330143944.611730.634.4312841.939.712730.334.5322836.64013729.434.8332836.140.414730.335.6342835.740.815730.935.7352841.44116729.335.9362836.74117729.729.5372842.443.118721.836.2382833.643.919729.638.8392836.244.520726.544.5402839.244.5(三)网络性能的评定从上述网络训练、学习的参数及表3中列出的计算结果,同文献1中的期望结果(表3)进行比较,网络输出的弹性模量同实际回归公式计算的弹性模量结果较为接近,平均误差2.3%,最大误差4.2%,满足误差精度,能够很好地满足工程要求。 测试样本、网络输出及误差 表3序龄期 混凝土的早期强度混凝土的早期弹性模量网络输出误差号(天)(mpa)(gpa)(gpa)(%)1321.133.433.91.52321.533.2342.43322.733.534.11.84725.438.539.73.15725.838.439.83.76725.53939.71.871431.639.439.50.381434.738.139.74.291436.138.939.51.5102846.142.939.33.9112843.94040.92.312284440.340.81.2 图3 网络仿真误差、训练次数及学习率四、结论本文通过多层前馈网络模型把混凝土的早期强度和龄期参数与混凝土的早期弹性模量联系起来,由上述实例计算表明:神经网络模型能够有效地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论