版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.第三章一元函数的导数和微分【字体:大 中 小】【打印】 3.1导数概念 一、问题的提出1.切线问题割线的极限位置切线位置如图,如果割线mn绕点m旋转而趋向极限位置mt,直线mt就称为曲线c在点m处的切线.极限位置即切线mt的斜率为2.自由落体运动的瞬时速度问题精品.二、导数的定义设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量x(点仍在该邻域内)时,相应地函数y取得增量;如果y与x之比当x0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数y=f(x)在点处的导数,记为即其它形式关于导数的说明:在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变
2、化的快慢程度。如果函数y=f(x)在开区间i内的每点处都可导,就称函数f(x)在开区间i内可导。对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)的导函数,记作精品.注意:2.导函数(瞬时变化率)是函数平均变化率的逼近函数.导数定义例题:例1、115页8设函数f(x)在点x=a可导,求:(1)【答疑编号11030101:针对该题提问】(2)【答疑编号11030102:针对该题提问】精品.三、单侧导数1.左导数:2.右导数:函数f(x)在点处可导左导数和右导数都存在且相等.例2、讨论函数f(x)=|x|在x=0处的可导性。【答疑编号11030103:针对该题提问】解精品.
3、闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间a,b上可导.由定义求导数步骤:例3、求函数f(x)=c(c为常数)的导数。【答疑编号11030104:针对该题提问】解例4、设函数【答疑编号11030105:针对该题提问】解精品.同理可以得到例5、求例6、求函数的导数。【答疑编号11030106:针对该题提问】解精品.例7、求函数的导数。【答疑编号11030107:针对该题提问】解 四、常数和基本初等函数的导数公式 五、导数的几何意义表示曲线y=f(x)在点处的切线的斜率,即 精品.切线方程为法线方程为例8、求双曲线处的切线的斜率,并写出在该点处的切线
4、方程和法线方程。【答疑编号11030108:针对该题提问】解由导数的几何意义, 得切线斜率为所求切线方程为精品.法线方程为六、可导与连续的关系1.定理 凡可导函数都是连续函数.注意:该定理的逆定理不成立,即:连续函数不一定可导。我们有:不连续一定不可导极限存在、连续、可导之间的关系。2.连续函数不存在导数举例例9、讨论函数在x=0处的连续性与可导性。【答疑编号11030109:针对该题提问】解:精品.例10、 p115第10题设,在什么条件下可使f(x)在点x=0处。(1)连续;(2)可导。【答疑编号11030110:针对该题提问】解:(1)(2)精品.七、小结1.导数的实质:增量比的极限;2
5、.导数的几何意义:切线的斜率;3.函数可导一定连续,但连续不一定可导;4.5.求导数最基本的方法:由定义求导数.6.判断可导性3.2求导法则 3.3基本求导公式 一、和、差、积、商的求导法则1.定理:如果函数在点x处可导,则它们的和、差、积、商(分母不为零)在点x处也可导,并且精品.推论2.例题分析例1、求的导数。【答疑编号11030201:针对该题提问】解例2、求的导数。【答疑编号11030202:针对该题提问】解精品.例3、求y=tanx的导数。【答疑编号11030203:针对该题提问】解同理可得例4、求y=secx的导数。【答疑编号11030204:针对该题提问】解精品.同理可得例5、1
6、31页例2设,求.【答疑编号11030205:针对该题提问】二、反函数的导数1.定理:如果函数在某区间内单调、可导且,那么它的反函数在对应区间内也可导,且有即反函数的导数等于直接函数导数的倒数.2.例题分析例6、求函数y=arcsinx的导数【答疑编号11030206:针对该题提问】解同理可得精品.例7、求函数的导数。【答疑编号11030207:针对该题提问】解特别地三、小结:初等函数的求导问题1.常数和基本初等函数的导数公式2.函数的和、差、积、商的求导法则设u=u(x),v=v(x)可导,则例8、127页1题(6)(14)(15)(1)1题(6)小题精品.【答疑编号11030208:针对该
7、题提问】解:(2)1题(14)小题【答疑编号11030209:针对该题提问】解:(3)1题(15)小题【答疑编号11030210:针对该题提问】解:精品.例9、115页3若一直线运动的运动方程为,求在t=3时运动的瞬时速度。【答疑编号11030211:针对该题提问】解:例10、115页5求曲线的与直线y=5x的平行的切线。【答疑编号11030212:针对该题提问】精品.另一条求出来是四、分段函数的求导问题1.114页定理:设(1)如果函数在上连续,在上可导,且当时,则(2)如果函数在上连续,在上可导,且当时,则2.分段函数的求导问题举例例11、 116页11 求下列分段函数f(x)的:(1)【
8、答疑编号11030213:针对该题提问】解:精品.五、复合函数的求导法则1.复合函数的求导法则定理如果函数在点x0可导,而y=f(u)在点可导,则复合函数在点x0可导,且其导数为即 因变量对自变量求导,等于因变量对中间变量求导,乘以中间变量对自变量求导。(链式法则)推广设,则复合函数的导数为2.例题分析例1.求函数y=lnsinx的导数。【答疑编号11030301:针对该题提问】解y=lnu,u=sinx.精品.例2.已知y=(2x2-3x+5)100,求。【答疑编号11030302:针对该题提问】例3.求y=sin5x的导数【答疑编号11030303:针对该题提问】精品.例4.求函数的导数【
9、答疑编号11030304:针对该题提问】解 精品.例5.(教材133页习题3.3,1题(2)小题)求的导数【答疑编号11030305:针对该题提问】精品.例6.求的导数【答疑编号11030306:针对该题提问】精品.例7.求的导数(a0)【答疑编号11030307:针对该题提问】例8.求函数的导数【答疑编号11030308:针对该题提问】解例9.(教材128页习题3.2,3题(5)小题)求的导数精品.【答疑编号11030309:针对该题提问】例10.(教材128页习题3.2,3题(7)小题)求y=(sinnx)(cosnx)的导数【答疑编号11030310:针对该题提问】例11.求的导数【答疑
10、编号11030311:针对该题提问】精品.例12.求的导数【答疑编号11030312:针对该题提问】例13.求的导数【答疑编号11030313:针对该题提问】精品.例14.求的导数【答疑编号11030314:针对该题提问】例15.(教材习题3.2,8题)已知在点x1可导,求a,b。【答疑编号11030315:针对该题提问】精品.精品.幂指函数、抽象的复合函数的求导例题一、幂指函数求导例1: xx【答疑编号11030401:针对该题提问】例2: y=(sinx)cosx求y【答疑编号11030402:针对该题提问】精品.二、抽象的复合函数求导例3:设f(u)可导,求下列函数的导数(1)f(lnx
11、)+lnf(x)【答疑编号11030403:针对该题提问】解:(2)y=f(e-x) 【答疑编号11030404:针对该题提问】解:(3)y= ef(x)精品.【答疑编号11030405:针对该题提问】(4)【答疑编号11030406:针对该题提问】(5)【答疑编号11030407:针对该题提问】3.4高阶导数 一、高阶导数的定义问题:变速直线运动的加速度。设s=f(t),则瞬时速度为v(t)=f(t)加速度是速度v对时间t的变化率a(t)=v(t)=f(t)定义如果函数f(x)的导数f(x)在点x处可导,即精品.存在,则称(f(x)为在点x处的二阶导数。记作。二阶导数的导数称为三阶导数,。三
12、阶导数的导数称为四阶导数,。例4:y=3x2+sinx【答疑编号11030408:针对该题提问】一般地,函数f(x)的n-1阶导数的导数称为函数f(x)的n阶导数,记作相应地,f(x)称为零阶导数;f(x)称为一阶导数。例5:求下列函数的二阶导数:(1)y=ax+b【答疑编号11030409:针对该题提问】精品.(2)y=cos nx;【答疑编号11030410:针对该题提问】(3)y=esinx【答疑编号11030411:针对该题提问】二、对于某些特殊的导数的高阶导数是有规律的。例6:求下列函数的n阶导数(1)y=ex【答疑编号11030412:针对该题提问】精品.(2)y=x5【答疑编号1
13、1030413:针对该题提问】例7:设y=x求y(n)解:用数学归纳法可以证明:特别,当=n时,即y=xn,其n阶导数y(n)= (x n)(n)=n!【答疑编号11030414:针对该题提问】例8:【答疑编号11030415:针对该题提问】精品.例9:设y=(x2+1)10(x9+x3+1),求y(30)【答疑编号11030416:针对该题提问】例10:设y=sinx,求y(n)。【答疑编号11030417:针对该题提问】解同理可得注意:求n阶导数时,求出13或4阶后,不要急于合并,分析结果的规律性,写出n阶导数.(数学归纳法证明)例11:设f(x)的n-2阶导数,求f(n)(x)。【答疑编
14、号11030418:针对该题提问】精品.3.5函数的微分 问题的提出实例:正方形金属薄片受热后面积的改变量.设边长由x0变到x0+x,正方形面积是x的线性函数且为a的主要部分,精品.是x的高阶无穷小,当|x|很小时可忽略。微分的定义定义:设函数y=f(x)在某区间内有定义,x0及x0+x在这区间内,如果成立(其中a是与x无关的常数),则称函数y=f(x)在点x0可微,并且称ax为函数y=f(x)在点x0相应于自变量增量x的微分,记作微分dy叫做函数增量y的线性主部。(微分的实质)可微的条件定理:函数f(x)在点x0可微的充要条件是函数f(x)在点x0处可导,且通常把自变量x的增量x称为自变量的
15、微分,记作dx,即dx=x即函数的微分dy与自变量的微分dx之商等于该函数的导数,导数也叫“微商”。微分的几何意义几何意义:(如图)精品.当y是曲线的纵坐标增量时,dy就是切线纵坐标对应的增量,当|x |很小时,在点m的附近,切线段mp可近似代替曲线段mn。微分的求法求法: 计算函数的导数, 乘以自变量的微分。1.基本初等函数的微分公式精品. 2.函数和、差、积、商的微分法则例1:设,求dy。【答疑编号11030501:针对该题提问】例2:,求dy。【答疑编号11030502:针对该题提问】精品.例3:,求dy。【答疑编号11030503:针对该题提问】微分形式的不变性设函数y=f(x)有导数f(x)精品.(1)若x是自变量时,dy= f(x)dx(2)若x是中间变量时,同样有结论:无论x是自变量还是中间变量,函数y=f(x)的微分形式总是,这就是微分形式的不变性例4:设y=sin(2x+1),求dy。【答疑编号11030504:针对该题提问】解法一:解法二:y=sinu,u=2x+1dy=cosudu=cos(2x+1)d(2x+1)=cos(2x+1)2dx=2cos(2x+1)dx例5(p144、例6(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学题库综合试卷B卷附答案
- 2024年图书馆管理服务项目资金申请报告代可行性研究报告
- 五年级数学(小数乘除法)计算题专项练习及答案
- 文化自信背景下民族传统体育文化的传承与发展
- 鲁教版高三上学期期末地理试题及解答参考
- 2024年定制出口业务销售协议模板
- 保安公司门卫服务承揽协议范本
- 2024高品质彩钢房建设协议书
- 2024批次高品质片石购买协议
- 2024年健身机构业务合作伙伴协议
- 2023-2024学年北京海淀区首都师大附中初二(上)期中道法试题及答案
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 二级公立医院绩效考核三级手术目录(2020版)
- 新苏教版六年级上册《科学》全一册全部课件(含19课时)
- 亲子阅读ppt课件
- 爱心妈妈结对帮扶记录表
- 农贸市场建设项目装饰工程施工方案
- 八年级语文上册期中文言文默写(含答案)
- MATLAB语言课程论文 基于MATLAB的电磁场数值图像分析
- 暗挖隧道帷幕注浆专项方案[优秀工程方案]
- 浅谈城市燃气管网安全运行存在问题及处理对策
评论
0/150
提交评论