单片机外文翻译_第1页
单片机外文翻译_第2页
单片机外文翻译_第3页
单片机外文翻译_第4页
单片机外文翻译_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、外文文献:Double switched reluctance motors parallel drive based on dual 89C52 single chip microprocessorsAbstractThe developed double Switched Reluctance motors parallel drive is presented, which is made up of two four-phase 8/6 structure Switched Reluctance motors, two four-phase asymmetric bridge powe

2、r converters and the controller. The four-phase 8/6 structure Switched Reluctance motor, the four-phase asymmetric bridge power converter and the control scheme are described. The closed-loop rotor speed control of the main motor and the closed-loop rotor speed control of the subroutine motor could

3、be based on the pulse width modulation fuzzy logic algorithm, which is implemented by dual 89C52 single chip microprocessor controller. The experimental results of rotor speeds and phase currents in two Switched Reluctance motors are given.Keywords: switched reluctance; fuzzy logic; microprocessor1.

4、IntroductionThe electric locomotives in coal mines are driven by series direct current motor drive system. The accessional resistor regulated control or the chopping control is used to adjust the rotor speed of the series direct current motor and to control the speed of electric locomotive. The Swit

5、ched Reluctance motor drive can be operated at four quadrants1. It could be used as electrical traction for electric locomotives in coal mines23. The soft mechanical characteristics of Switched Reluctance motor drive4 contribute to parallel double Switched Reluctance motor drives system with synchro

6、nization of the rotor speed and the loads being in equilibrium. The double Switched Reluctance motors parallel drive system can be used to replace the series direct current motor drive system as the adjustable speed motor drive for the electric locomotives. The Switched Reluctance motor drive is mad

7、e up of the Switched Reluctance motor, the power converter and the digital controller. There are four-phase 8/6 structure Switched Reluctance motor and three-phase 6/4 structure Switched Reluctance motor. The fault tolerance ability of four-phase 8/6 structure Switched Reluctance motor is higher tha

8、n that of three-phase 6/4 structure Switched Reluctance motor so that four-phase 8/6 structure Switched Reluctance motor is adopted in the system. There are asymmetric bridge circuit, bifilar winding circuit, common switch circuit, resistance commutation circuit, split supply circuit, inductance com

9、mutation circuit for four-phase power converter with four-phase 8/6 structure Switched Reluctance motor. The four-phase asymmetric bridge power converter circuit is adopted in the system due to its independence in each phase. The digital microprocessor has the advantages in high reliability and stab

10、ility for control of Switched Reluctance motor drive. Some control algorithms can be implemented by the digital microprocessor. The Switched Reluctance motor drive is based on Intel 80315, Intel 80C196KB6, Intel 87C196KC7. The 89C52 digital microprocessor had been developed for sliding mode and PI c

11、ontrol of a single Switched Reluctance motor drive8. The paper presents dual 89C52 single chip microprocessors controller for double Switched Reluctance motors parallel drive. It is not easy to gain the exact mathematical model of Switched Reluctance motor drive since it has nonlinear magnetic paths

12、 in the motor and nonlinear circuit topology in the power converter. It is not necessary for the fuzzy logic control to gain the exact mathematical model of Switched Reluctance motor drive. The rotor speed closed-loop control could be implemented based on the fuzzy logic algorithm.2.Scheme of system

13、The developed double Switched Reluctance motors parallel drive consists of two four-phase 8/6 structure Switched Reluctance motors, two four-phase asymmetric bridge power converters and the digital controller.1.1. MotorTwo four-phase 8/6 structure Switched Reluctance motors are adopted in the develo

14、ped double Switched Reluctance motors parallel drive. The cross section of the four-phase 8/6 structure Switched Reluctance is shown in Fig.1. There are eight poles in the stator, while six poles in the rotor. The two coils on the diametrically opposite stator poles can be connected to make up a pha

15、se winding. There is only phase winding in the stator. There is no winding, no magnet and no brush in the rotor. There is a rotor position detector on the motor for detecting rotor position and speed. The photograph of the developed dual four-phase 8/6 structure Switched Reluctance motors is shown i

16、n Fig. 2.Fig 1.Cross section of the four-phase 8/6 structure SR motorFig 2.Photograph of the developed dual four-phase 8/6 structure SR motors2.2. Power convertersThe main circuit of the two four-phase asymmetric bridge power converters with phase windings, “A1”, “B1”,“C1” and “D1”, “A2”, “B2”, “C2”

17、 and “D2”, is shown in Fig.3.2.3. Control schemeThe turned-on angle and the turned-off angle of the main switches are fixed. The triggered signals of the main switches in the dual power converters are modulated by PWM signal. The closed-loop rotor speed control in the main Switched Reluctance motor

18、could be implemented by comparison of the given rotor speed and the real rotor speed of main motor, and by regulation of the duty ratio of PWM signal in main power converter with fuzzy logic control algorithm. The closed-loop rotor speed control in the subroutine Switched Reluctance motor could be i

19、mplemented by comparison of the real rotor speed of main motor and the real rotor speed of subroutine motor, and by regulation of the duty ratio of PWM signal in subroutine power converter with fuzzy logic control algorithm. The fuzzy logic control algorithm in an 89C52 digital microprocessor for th

20、e main motor could be (1)where, the given rotor speed is , and the real rotor speed is , the deviation of the rotor speed of the main motor at the moment of ti is . Variation from the deviation of the rotor speed is as (2)where, e(i-1)1 is the deviation of the rotor speed at the moment of ti-1. The

21、duty ratio of the PWM signal of the main motor at the moment of ti is (3)where, is the increment of the duty ratio of the PWM signal at the moment of ti and is the duty ratio of the PWM signal at the moment of ti-1. The fuzzy logic algorithm could be expressed asif and then , i = 1,2, m, j = 1,2, ,n

22、 (4)where, is the fuzzy set of the deviation of the rotor speed, is the fuzzy set of the variation from the deviation of the rotor speed, and is the fuzzy set of the increment of the duty ratio of the pulse width modulation signal.The fuzzy logic control algorithm in the other 89C52 digital micropro

23、cessor for the subroutine motor could be as follows (5)where, the real rotor speed of the subroutine motor is nf2, the deviation of the rotor speed of the subroutine motor at the moment of ti is ei2. The variation from the deviation of the rotor speed is as follows (6)where, e(i-1)2 is the deviation

24、 of the rotor speed at the moment of ti-1. The duty ratio of the PWM signal of the main motor at the moment of ti is (7)where, is the increment of the duty ratio of the PWM signal at the moment of ti and is the duty ratio of the PWM signal at the moment of ti-1. The fuzzy logic algorithm could be ex

25、pressed as followsif and then , i = 1,2, m, j = 1,2, ,n (8)where, is the fuzzy set of the deviation of the rotor speed, is the fuzzy set of the variation from the deviation of the rotor speed, and is the fuzzy set of the increment of the duty ratio of the pulse width modulation signal.The closed-loo

26、p rotor speed control of the main motor and the closed-loop rotor speed control of the subroutine motor could be based on the pulse width modulation fuzzy logic algorithm, which is implemented by dual 89C52 single chip microprocessors controller. The photograph of the developed dual 89C52 single chi

27、p microprocessors controller is shown in Fig. 4.The schematic diagram of the developed dual Switched Reluctance motors parallel drive prototype is shown in Fig.5. There are the protection circuit, the commutation circuit and the gate driver circuit in each motor drive system, respectively.3.Experime

28、ntal testsThe developed dual Switched Reluctance motors parallel drive prototype is supplied by DC 132V storage batteries. The experimental results in the rotor speed curves of the two motors are shown in Fig. 6. In Fig. 6 a) the given rotor speed ng = 400 r/min, b) the given rotor speed ng = 750 r/

29、min, c) the given rotor speed ng = 1100 r/min. The experimental results in the phase current waveforms of the two motors are shown in Fig. 7. In Fig. 7 a) the given rotor speed ng = 400 r/min, b) the given rotor speed ng = 800 r/min, c) the given rotor speed ng = 1040 r/min. It is shown that synchro

30、nization of the rotor speeds of the motors is well. The difference in the peak value of phase current of the two motors and in phase current waveforms of the two motors is small. It means that the loads are distributed on the two motors in equilibrium. Fig. 3. Main circuit of the power converters Fi

31、g. 4. Photograph of the developed digital controllerFig. 5. Schematic diagram of the developed dual Switched Reluctance motors parallel drive prototype4.ConclusionsThe soft mechanical characteristics of Switched Reluctance motor drive contribute to parallel dual Switched Reluctance motors with synch

32、ronization of the rotor speed and the loads being in equilibrium. The prototype made up of two four-phase 8/6 structure Switched Reluctance motors, two four-phase asymmetric bridge power converters and the digital controller is developed. The closed-loop rotor speed control in the main Switched Relu

33、ctance motor and the closed-loop rotor speed control in the subroutine Switched Reluctance motor are implemented by PWM fuzzy logic control algorithm, which are based on dual 89C52 digital microprocessors. The experimental results in the rotor speed curves of the two motors and in the phase current

34、waveforms of the two motors show that synchronization of the rotor speeds of the motors is well and the loads are distributed on the two motors in equilibrium.a) b) c) Scale: Abscissa: 0.5 s/div., Ordinate: 500 r/min/div.Fig. 6. Tested rotor speed curvesa) Scale: Abscissa: 5.0 ms/div. b) Scale: Absc

35、issa: 2.0 ms/div. c) Scale: Abscissa: 2.0 ms/div. Scale: Ordinate: 4.0 A/div.Fig. 7. Simulated phase current waveformsAcknowledgementsThe authors would like to thank the Project supported by Specialized Research Fund for the Doctoral Program of Higher Education of China.References1 H Chen, G Xie. Th

36、e parallel drive system of the double switched reluctance motors for locomotive traction application. Proceedings of the 27 Annual Conference of the IEEE Industrial Electronics Society, 2 (2001) 1483-1487.2 P. Greenhough, Switched Reluctance Variable Speed Drives-A Focus on Applications. Mining Tech

37、nology, 4 (1996) 107-110.3 H. Chen and G. Xie, 80C31 Single Chip Computer Control of the Switched Reluctance Motor for Locomotive in Coal Mines. Proceedingsof 5th International Conference on Electrical Machines and Systems, I. (2001) 604-607.4 H Chen, D Zhang and G Xie. Study of the mechanical prope

38、rties for the switched reluctance motor drive. Journal of China University of Mining & Technology, 5 (2001) 458-462.5 H Chen. Single chip microprocessor control for switched reluctance motor drive. KIEE International Transactions on EMECS, 4 (2002) 207-213.6 H Chen, W Cheng, G Xie, C Zhang. PID cont

39、rol of a switched reluctance motor drive with intel 80c196kb microcomputer. Proceedings of IEEE Hong Kong Symposium on Robotics and Control, 1 (1999) 304-307.7 H Chen and T Su. Control of The Switched Reluctance Motor Drive at Four Quadrants Based on Intel 87C196KC Single Chip Microprocessor. Dynami

40、cs of Continuous, Discrete and Impulsive Systems, Series B (2005) 306-311.8 H Chen and X Zan. Sliding mode and PI control of switched reluctance motor drive. Dynamics of Continuous, Discrete and Impulsive Systems, Series B (2006) 427-431.中文译文:基于双89C52单片机微处理器双开关磁阻电动机并联驱动摘 要开发的双开关磁阻电动机并联驱动的提出,它是由两个四相8

41、/6结构的开关磁阻电机,两个四相非对称桥式功率转换器和控制器构成。四相8/6结构的开关磁阻电机,四相非对称桥式功率变换器和控制方案进行了描述。主电机和子程序马达的闭环转子速度控制的闭环转子速度控制,可以基于脉冲宽度调制模糊逻辑的算法,这是通过双重89C52单芯片微处理机控制器实现。给出转子的速度和两个开关磁阻电机的相电流的试验结果。关键词:开关磁阻;模糊逻辑;微处理器1. 简介煤矿里的电力机车是由一系列直流电动机驱动系统驱动的。附加的电阻调节器或斩波控制被用来调整串联直流电动机的转子速度,并控制电力机车的速度。开关磁阻电机驱动器可以在四象限运行1。它可以被用作电牵引电力机车在煤矿23。开关磁阻

42、电机驱动的软机械特性4有助于平行双开关磁阻电机驱动系统与转子转速同步和负载平衡。双开关磁阻电动机并联驱动系统可用于替代系列直流电动机驱动系统的可调速电动机驱动的电力机车。开关磁阻电机驱动由开关磁阻电机,功率变换器和数字控制器组成。包括四相8/6结构开关磁阻电机和三相6/4结构开关磁阻电机。四相8/6结构开关磁阻电机的容错能力比三相6/4结构开关磁阻电机的高,因此采用四相8/6结构开关磁阻电机系统。有不对称的桥电路,双线绕组电路,常见的开关电路,电阻整流电路,分立电源电路,四相电源转换器,四相8/6结构开关磁阻电机电感整流电路。由于四相非对称桥式功率变换器电路在在系统中其各相独立通过,因此该数字

43、微处理器具有高可靠性和稳定性开关磁阻电机驱动控制的优势,一些控制算法可以由数字微处理器来实现。开关磁阻电机驱动是基于英特尔80315,英特尔80C196KB6,英特尔87C196KC7的系统。89C52数字微处理器已经制定了滑动单开关磁阻电机驱动的模式和PI控制8。本文介绍了双89C52单片机微处理器控制器,双开关磁阻电动机并联驱动。获得开关磁阻电机驱动的精确数学模型很难,因为它具有在功率变换器的电机和非线性电路拓扑非线性磁路。对于模糊逻辑控制没有必要获得开关磁阻电机驱动的精确数学模型。转子速度的闭环控制可以基于模糊逻辑的算法来实现。2. 系统方案所开发的双开关磁阻电动机并联驱动由两个四相8/

44、6结构开关磁阻电机,双四相不对称桥功率转换器和数字控制器构成。2.1电机两个四相8/6结构开关磁阻电机采用双开关磁阻电动机并联驱动。四相8/6结构的开关磁阻的横截面示于图1。有八个磁极的定子,而六个极中的转子。在径向相对的定子磁极上的两个线圈可以连接到构成一个相绕组。在转子里没有缠绕,没有磁铁,也没有刷,仅存在相绕组的定子。有一个转子位置检测器用于检测电动机转子的位置和速度。在开发的双四相8/6结构的开关磁阻电机的照片示于图2。图 3. 四相8/6结构的SR电机的横截面图 4. 在开发的双四相8/6结构SR电机的照片2.2电源转换器两个四相非对称桥式功率变换器的相绕组的主电路:“A1”,“B1

45、”,“C”和“D1”,“A2”,“B2”,“C2”和“D2”,是图3所示。 2.3控制方案导通的角度和主开关的关断角是固定的。在双电源转换器的主开关的触发信号由PWM信号进行调制的。在主开关磁阻电机的闭环转子速度控制可以由给定的转子速度和主电机的实际转子速度的比较来实现,并且通过PWM信号在主功率变换器以模糊逻辑控制占空比调节的算法实现。在子程序的开关磁阻电机的闭环转子速度控制可通过主马达及子程序电动机的实际转子速度的实际转子速度的比较来实现,并且通过PWM信号的子程序功率变换器占空比调节模糊逻辑控制算法。在一个89C52数字微处理器的模糊逻辑控制算法,主电机可以是 (1)式中,给定的转子速度

46、是,真正的转子速度是,主电机的转子速度中的ti的时刻的偏差。从转子速度的偏差的变化是 (2)式中,e(i-1)1为转子速度中的ti-1的时刻的偏差。主电机的PWM信号的ti的时刻的占空比为: (3)式中,是在PWM信号中的ti的时刻增加的占空比,是所述PWM信号中的ti-1的时刻的占空比。模糊逻辑算法可以表示为如果 且 则 , i = 1,2, m, j = 1,2, ,n (4)式中,是模糊集的转子速度的偏差的,是模糊集合从转子转速的偏差的变化,和是模糊集合的脉冲宽度调制信号的占空比的增量。在其它89C52数字微处理器电机子程序的模糊逻辑控制算法的可以是如下 (5)式中,电机子程序的实际的转

47、子速度是,子程序电动机的转子速度中的ti的时刻的偏差是。转子转速的偏差如下: (6)式中,e(i-1)2是转子速度中的ti-1的时刻的偏差。主电机的PWM信号的ti的时刻的占空比 (7)式中,是在PWM信号中的TI的时刻的占空比的增加,而是所述PWM信号中的ti-1时刻的占空比。模糊逻辑算法可表示如下如果 且 则 , i = 1,2, m, j = 1,2, ,n (8)式中,是模糊集的转子速度的偏差的,是模糊集合从转子转速的偏差的变化,和是模糊集合的脉冲宽度调制信号的占空比的增量。主电机和子程序电机的闭环转子速度控制的闭环转子速度控制,可以基于脉冲宽度调制模糊逻辑的算法,这是通过双重89C5

48、2单芯片微处理器控制器实现。发达双89C52单芯片微处理器控制器的照片示于图4。在开发的双开关磁阻电动机并联驱动原型的示意图示于图5。各电动机驱动系统都分别有保护电路,换向电路和栅驱动电路。3.实验测试所开发的双开关磁阻电动机并联驱动的原型是由直流132V蓄电池供电。在两个电动机的转子速度曲线的实验结果示于图6。图6 a)在给定的转子速度ng = 400转/分钟,b)该给定的转子速度ng = 750转/分,c)该给定的转子速度ng =1100转/分。它表示电机转子的速度同步很好。在两个马达的相电流的峰值和在相位两个电动机的电流波形的差异是很小的。这意味着负载分布在处于平衡状态的两个电机上。 图 3. 电力转换器的主电路 图 4. 在开发的数字控制器的图片图 5. 在开发的双开关磁阻电动机并联驱动的原型示意图4.结论开关磁阻电机驱动的软机械特性有助于平行双开关磁阻电机转子速度同步和负载平衡之中。这个被开发的系统由两个四相8/6结构的开关磁阻电机,两个四相非对称桥式电源转换器和数字控制器组成。在主开关磁阻电机以及在子程序开关磁阻电机的闭环转子速度控制的闭环转子速度控制由PWM模糊逻辑控制算法,这是基于双89C52数字微处理器实现的。在两个电动机的,并在两个电机的相电流的波形,转子速度曲线的实验结果表明,该转子转速的电机的同步的载荷分布在处于平衡状态的两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论