周期信号的傅里叶变换_第1页
周期信号的傅里叶变换_第2页
周期信号的傅里叶变换_第3页
周期信号的傅里叶变换_第4页
周期信号的傅里叶变换_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.,3.9 周期信号的傅里叶变换,正弦/余弦信号的傅里叶变换 一般周期信号的傅里叶变换,.,正弦/余弦信号的傅里叶变换,.,一般周期信号的傅里叶变换,.,小结: 1.由一些冲激组成离散频谱. 2.位于信号的谐频处. 3.大小不是有限值,而是无穷小频带内有无穷大的频谱值.,.,周期信号的傅立叶变换存在条件,1.周期信号不满足绝对可积条件. 2.引入冲激信号后,冲激的积分是有意义的. 3.在以上意义下,周期信号的傅立叶变换是存在的. 4.周期信号的频谱是离散的,其频谱密度,即傅立叶变换是一系列冲激.,.,.,3.10 抽样信号的傅里叶变换,时域抽样 频域抽样,问题: 1)抽样后离散信号的频谱是什么

2、样的?它与未被抽样的连续信号的频谱有什么关系? 2)连续信号被抽样后,是否保留了原信号的所有信息?即在什么条件下,可以从抽样的信号无失真的还原原始信号?,*时域抽样,.,矩形脉冲抽样-自然抽样,上式表明: 信号在时域被抽样后,它的频谱Fs()是连续信号的频谱F()以抽样频率s为间隔周期地重复而得到的.在重复过程中,幅度被抽样脉冲p(t)的傅立叶系数所加权,加权系数取决于抽样脉冲序列的形状.,.,冲激抽样-理想抽样,上式表明: 由于冲激序列的傅里叶系数Pn为常数,所以F()是以s为周期等幅地重复,如下图所示:,.,*频域抽样,.,上式表明: 若f(t)的频谱F()被间隔为1的冲激序列在频域中抽样

3、,则在时域中等效于f(t)以抽样间隔为周期而平移。从而也就说明了“周期信号的频谱是离散的”这一规律。,.,3.11 抽样定理,时域抽样定理 频域抽样定理,.,一个带限信号f(t),如果频谱|m,则信号f(t)可以唯一地由其均匀时间间隔Ts1/(2fm)上的抽样值f(nTs)确定. 且抽样频率fs2fm(s2m). 而fs=2fm称为奈奎斯特(Nyquist)频率; Ts=1/(2fm)称为奈奎斯特间隔.,时域抽样定理,Ts,h(t),Ts,f(t),.,一个时限信号f(t),如果集中于|t|tm,则其频谱F()可以唯一由其均匀频率间隔fs (fs1/(2tm)上的抽样值F(ns)确定.,频域抽

4、样定理,.,时域抽样与频域抽样的对称性,若f(t)被等间隔T取样,将等效于F()以s=2/T为周期重复; 而F()被等间隔s取样,则等效于f(t)以T为周期重复. 因此,在时域中进行抽样的过程,必然导致频域中的周期函数;在频域中进行抽样的过程,必然导致时域中的周期函数。,作业: 3-41 改,.,下次课包括4.1-4.5节的内容, 请预先做好听课准备。,.,第三章总结 及习题课,.,知识点回顾:,周期信号傅里叶级数分析,非周期信号的傅里叶变换,周期信号的傅里叶变换,典型周期信号的FS,典型非周期信号的FT,傅里叶变换基本性质,抽样信号的FT,抽样定理,.,傅里叶级数(FS),.,函数f(t)的对称性与FS系数关系,.,傅里叶变换的定义,.,典型信号的FT,.,非周期信号的FT的性质,.,.,.,一般周期信号的FT,周期信号的FS与其单周期信号的FT之间的关系,.,时域抽样信号的FT,频域抽样信号

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论