版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,Corporate Finance Ross Westerfield Jaffe,8th Edition,本章要点,掌握投资收益的计算 掌握投资收益标准差的计算 理解不同投资的历史上的收益与风险情况 理解正态分布的重要性 理解几何平均数与算术平均数 掌握期望收益的计算 掌握协方差,相关系数与贝塔值的计算,本章要点,理解多元化的影响 理解系统风险的原理 理解证券市场线 理解风险与收益的对称 掌握CAPM的运用,本章概览,7.1收益 7.2持有期收益率 7.3收益统计 7.4股票的平均收益和无风险收益 7.5风险统计 7.6更多关于平均收益率 7.7 单个证券,本章概览,7.8 期望收益、方差与
2、协方差 7.9 组合的风险与收益 7.10 两种资产组合的有效集 7.11 多种资产组合的有效集 7.12 多元化: 一个例子 7.13 无风险借贷 7.14 市场均衡 7.15 期望收益与风险之间的关系 (CAPM),第一部分:风险与收益的历史启示,掌握投资收益的计算 掌握投资收益标准差的计算 理解不同投资的历史上的收益与风险情况 理解正态分布的重要性 理解几何平均数与算术平均数,7.1收益值,收益百分比 资本利得与股利收入,股票收益 = 红利 +资本利得,收益率,收益:例子,假设你在一年前以25元每股购买了100股沃尔玛股票,过去一年中你收到了20元的股利,年末沃尔玛股票的市场价值是30元
3、每股,你会如何处理? 期初你投资了25元 100股 = 2,500元。年末股票市场价值为3,000元,股利为20元,你的收益为520元 = 20 + (3,000 2,500). 年收益率为:,收益:例子,收益值:520元,收益率:,7.2 持有期收益率,持有期收益率,即当投资者持有资产n年, i 年收益率为 ri,则:,持有期收益率: 例子,假设你的投资在四年时间内的收益情况如下:,持有期收益率,美国有关股票、债券和国库券收益率的最著名研究由Roger Ibbotson and Rex Sinquefield主持完成。 他们提供如下5种美国历史上重要的金融工具的历年收益率: 大公司普通股 小
4、公司普通股 长期公司债 长期政府债 美国国库券,参阅P169170,7.3 收益统计,资本市场历史收益可用下列方法进行统计: 平均收益 收益的标准差 (SD),参阅P171,参阅P173,1926-2004美国各类资产年总收益率,Source: Stocks, Bonds, Bills, and Inflation 2006 Yearbook, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.,
5、90%,+ 90%,0%,平均 标准差 分布 项目 收益率 大公司股票12.3%20.2% 小公司股票17.432.9 长期公司债6.28.5 长期证府债5.89.2 美国国库券3.83.1 通货膨胀率3.14.3,参阅P172,7.4 平均股票收益与无风险收益,风险溢价是指由于承担风险而增加的(相对于无风险收益)超额收益。 普通股相对于无风险收益存在着长期超额收益。 19262005年大公司股票的平均超额收益率为: 8.5% = 12.3% 3.8% 19262005年小公司股票的平均超额收益率为: 13.6% = 17.4% 3.8% 19262005年长期公司债超额收益率为: 2.4%
6、= 6.2% 3.8%,风险溢价,假设现在一年期的国库券收益率为5%。 那么市场上小公司股票的预期收益是多少?回顾一下,19262005年小公司股票的超额收益为13.6%。 因为无风险收益为 5%,那么我们预期的收益率为: 18.6% = 13.6% + 5%,风险与收益对称,7.5 风险统计,目前仍然没有一个被普遍认可的有关风险的定义。 通常人们用方差与标准差来测量风险 标准差是度量样本离散程度的标准统计指标,常用来表示正态分布的离散程度,也是我们最常用的度量收益变动性或风险的方法。,正态分布,从正态分布的总体中抽取一个足够大的样本,其形状就像形。,例子 : 收益与方差,方差 = .0045
7、 / (4-1) = .0015 标准差 = .03873,7.6 更多关于平均收益率,算术平均率 :按期数计算平均收益率 几何收益率:按复利计算的平均收益率 几何平均收益率通常小于算术平均收益率,每期收益率不变时两者相等。 谁更可靠? 算术平均收益率从长期来看是高估的; 几何平均收益率从短期来看又过于悲观。,几何平均收益率:例子,正如上例:,投资者的几何平均收益率为 9.58%, 持有期收益率为44.21%。,几何平均收益率:例子,几何平均收益率与算术平均收益率并不相同,收益率的预测,用 Blume 方程进行预测:,T 预测时间,N 预测所用样本的历史期限长度,T N。,参阅P176,课堂提
8、问,在教材中哪种投资具有最高的平均收益率和风险溢价? 在教材中哪种投资具有最高的标准差? 几何平均收益率与算术平均收益率之间存在什么不同?,第二部分:资本资产定价模型 (CAPM),掌握期望收益的计算 掌握协方差,相关系数与贝塔值的计算 理解多元化的影响 理解系统风险的原理 理解证券市场线 理解风险与收益的对称 掌握CAPM的运用,7.7 单个证券,单个证券的特征: 期望收益 方差与标准差 协方差与相关系数 (相对于其他证券),参阅P182185,7.8 期望收益、方差和协方差,假设只有两种资产(股票与债券),经济将出现三种不同的情况,每种情况的概率为1/3。,期望收益率,期望收益率,期望收益
9、率,方差,方差,标准差,方差与标准差,协方差,离差表示在每种状况下收益与期望收益的离散程度,权重等于离差乘以概率(1/3),协方差,参阅P183184,相关系数,7.9 组合的风险与收益,股票期望收益和风险都比债券要大,现假设各投资50。,参阅P186188,组合,组合收益等于股票和债券收益的加权平均:,组合,两种资产组合的方差为:,BS 为债券与股票收益的相关系数,组合,分散化降低了风险,两种资产各 50 的组合比单独持有某个资产的风险要小。,7.10 两种资产组合的有效集,我们可以考虑除了各50的其它投资组合的收益与风险情况。,100% bonds,100% stocks,两种资产组合的有
10、效集,100% stocks,100% bonds,一些组合总是比其他的“好”,这些组合具有较高的收益和较低的风险。,不同相关系数的组合,100% bonds,收益,100% stocks, = 0.2, = 1.0, = -1.0,相关系数介于: -1.0 r +1.0 当 r = +1.0时, 没有降低风险的可能。 当 r = 1.0时, 存在降低风险的可能。,7.11 多种资产组合的有效集,假设有许多种风险资产,我们仍然可以找得到不同组合的机会集或可行集。,收益,P,单个资产,多种资产的有效集,由最小方差组成的机会集构成了资产组合的有效边界。,收益,P,最小方差组合,有效边界,单个资产,
11、多元化与组合风险,多元化能显著减小收益的波动性同时并不减少期望收益。 风险的降低是因为资产间期望收益的相互此消彼长的关系。 然而,组合不能消除系统风险。,组合风险与证券数量,不可分散风险; 系统风险; 市场风险,可分散风险; 非系统风险; 公司个体风险; 特有风险,n,在一个大样本组合中,方差项被有效地分散掉,但协方差项却不能被消除,如图所示:,组合风险,系统风险,系统风险影响市场绝大多数的资产,同时也被称为不可分散风险与市场风险,如GDP,通货膨胀,利率等。,非系统风险 (可分散风险),影响有限数量资产的风险因素,也被称为个体独有风险或资产个别风险,包括诸如罢工、零部件短缺,等等。这类风险可
12、以被资产的组合分散掉,比如,我们只持有一项资产或同一行业的资产,那么将面临的就是非系统性风险。,总体风险,总体风险 =系统风险非系统风险 用收益标准差来代表总体风险 充分分散化的投资组合的非系统风险非常小,其总体风险约等于系统风险。,无风险资产的最优投资组合,在股票与债券之外,再考虑一个无风险的短期国债。,100% bonds,100% stocks,rf,收益,7.12 无风险借贷,投资者可以在国债与平衡基金间进行组合投资。,100% bonds,100% stocks,rf,收益,Balanced fund,CML,无风险借贷,如果可获得无风险资产和有效边界,则应选择斜率最陡的资本配置线。
13、,收益,P,有效边界,rf,CML,7.13 市场均衡,找到资本配置线后,所有的投资者都会在该线上寻找一个无风险资产与市场风险的组合,并且在同质预期情况下,投资者都将购买M点代表的风险资产。,收益,P,efficient frontier,rf,M,CML,市场均衡,投资者在CML线上,根据不同的风险偏好选择投资组合,重要的是,所有投资者都面临同一条资本市场线。,100% bonds,100% stocks,rf,收益,Balanced fund,CML,风险的定义:当投资者持有市场组合,研究者认为,某个证券在一个大型的组合当中,最佳的风险度量是这个证券的贝塔系数。 Beta 系数衡量一个证券对市场组合变动的反应程度。,通过回归估计b 值,证券回报率,市场回报率 %,Ri = a i + biRm + ei,7.14 期望收益与风险之间的关系 (CAPM),市场的期望收益:,单个证券的期望收益:,风险溢价,单个证券的期望收益,这个公式被称为资本资产定价模型 (CAPM):,风险与收益的关系,期望收益,b,1.0,风险与收益的关系,期望收益,b,1.5,课堂提问,如何计算单个证券的期望收益率和标准差?如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建行人民币贷款合同模板
- 投资合作协议书标准格式
- 联合技术研发协议
- 房屋互易契约书范例
- 隐名股东出资协议撰写指南
- 公共设施设计合同范本
- 非织造过滤材料课程设计
- 工程征用土地合同模板
- 墙砖铺贴服务合同范本
- 工业产品购销协议样本
- T-ZAQ 10116-2023 新时代基层理论宣讲0576 工作法操作规范
- 棒球比赛记录基础手册
- 地下停车场交安设施施工方案车库交通安全设施施工方案标志标线交通设施
- 跨越门槛童心出发-少先队仪式教育的成长探索之路 论文
- 数字媒体的传播者和受众
- cad及天正快捷键大全
- 零基础形体舞蹈(上)智慧树知到答案章节测试2023年广西师范大学
- 高中音乐 人音版 音乐鉴赏课(必修)《鼓舞弦动 - 丰富的民间器乐》丝竹相和 第1课时 《中花六板》
- 新入职护士培训轮转手册填写制度
- 佛山岭南新天地商业调研分解
- GB/T 2910.1-2009纺织品定量化学分析第1部分:试验通则
评论
0/150
提交评论