苏教版高三数学复习课件7.5平面与平面的位置关系.ppt_第1页
苏教版高三数学复习课件7.5平面与平面的位置关系.ppt_第2页
苏教版高三数学复习课件7.5平面与平面的位置关系.ppt_第3页
苏教版高三数学复习课件7.5平面与平面的位置关系.ppt_第4页
苏教版高三数学复习课件7.5平面与平面的位置关系.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、通过直观感知、操作确认,归纳出平面与平面平行、垂直的判定定理和性质定理,并能用它们证明面面的平行与垂直问题,第5课时 平面与平面的位置关系,【命题预测】 1平面和平面平行是必考内容,难度不大,其考查方式不外乎这样两种:一是考查平行关系的判定(小题);二是考查平行关系的证明(大题),在复习时应注意定理与性质的条件,及时总结“常考常错”的地方 2对二面角以考查基本方法为主 3对垂直关系的考查形式多样:填空题、解答题小题多考查线面、面面、垂直关系的判定及性质;大题则考查线面、面面垂直关系的证明以及利用垂直关系进行有关计算.2011年考查垂直关系的可能性很大,但都是基础题,【应试对策】 1面面平行的判

2、定定理及其推论是论证两个平面平行的主要依据对其判定 定理,可紧紧抓住六个字:“两条”、“相交”、“平行”对于两个平面平行问题的判定或证明,主要是将其转化为一个平面内的直线与另一个平面平行的问题,即“线面平行,则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面平面平行的性质是根据平面平行、线面平行、线线平行的定义直接给出的,证明线面平行往往转化为证明面面平行因此,两个平面平行的判定和性质定理为证明空间平行关系提供了转化的路径,2在解决线面、面面平行的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”,而在应用性质定理时,其顺

3、序恰好相反但也要注意,转化的方向总是受题目的具体条件而定,决不可过于模式化在处理实际问题的过程中,可以先从题设条件入手,分析已有的平行关系,再从结论入手分析所要证明的平行关系,从而架起已知与未知之间的桥梁根据条件应用性质是证明几何问题的必由之路,而作辅助线或辅助平面则是应用性质的自然结果,从而实现线线、线面与面面关系的转化,3在证明两平面垂直时,一般先从现有直线中寻找平面的垂线,若这样的直线在图中不存在,则可通过作辅助线来解决在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直,故熟练掌握线线垂直、面面垂直间的转化条件是解决这类问题的关键在线线垂直和线面垂直的相互转化中,平面

4、在其中起到至关重要的作用无论是线面垂直还是面面垂直,都源自线与线的垂直,这种转化思想在解题时非常重要在处理实际问题的过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的垂直关系,从而架起已知与未知之间的“桥梁”,4面面垂直的判定定理与性质定理实现了线面垂直与面面垂直的相互转化,这样面面垂直实际上就是线面垂直,最后归结为我们熟悉的线线垂直,能否灵活地实施空间垂直的转化是解题的关键,一般来讲,线线垂直最基本,在转化过程中起到穿针引线的作用;线面垂直是枢纽,将线线垂直与面面垂直联系在一起同时也要注意平行关系与垂直关系的内在联系 5计算二面角的关键是作出二面角的平面角,其作法主

5、要有:(1)利用二面角平面角的定义,即在棱上任取一点,然后分别在两个面内作棱的垂线,则两垂线所成的角为二面角的平面角;(2)利用棱的垂面,即棱的垂面与两个平面的交线所成的角是二面角的平面角因此,二面角的求解思路都是“一作二证三算”,【知识拓展】 1平行关系的转化 注意:(1)由上面的框图易知三者之间可以进行任意转化,因此要判定某一平行的过程就是从一平行出发不断转化的过程,在解题时把握这一点,灵活确定转化的思路和方向 (2)证平行关系的方法很多,但我们应该清楚常用的方法是什么?遇到一个证平行的题目,应该知道从哪里入手比较简单,2垂直关系的转化 在证明两平面垂直时一般先从现有直线中寻找平面的垂线,

6、若这样的直线图中不存在,则可通过作辅助线来解决如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直故熟练掌握“线线垂直”“面面垂直”间的转化条件是解决这类问题的关键,每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行,最终达到目的例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直立体几何中的证明,我们要牢牢抓住“转化”这一武器,线与线、线与面、面与面之间的垂直与平行,都可互相转化,转化的理论依据是这三种平行与垂直的判定定理、性质定理等解题中要注意运用上面的转化途径,1两

7、个平面的位置关系 2两个平面平行的判定: (1)定义; (2)判定定理:a,b,abM,a ,b ; (3)a,a . 3两个平面平行的性质 (1)两个平面平行的性质定理:,a,b ; (2),l .,ab,l,4两个平行平面间的距离 与两个平行平面都垂直的直线,叫做这两个平行平面的 ,它夹在这 两个平行平面间的线段,叫做这两个平行平面的公垂线段,公垂线段的长 度叫做 ,公垂线,两个平行平面间的距离,5二面角及其平面角 (1)二面角的定义 一条直线和由这条直线出发的两个半平面所组成的图形叫做 ,这条直线 叫做二面角的 ,每个半平面叫做二面角的 (2)二面角平面角的定义 以二面角的棱上任意一点为

8、端点,在两个面内分别作垂直于棱的射线,这两条 射线所成的角叫做二面角的 ,平面角是直角的二面角叫做 ,二面角,面,棱,平面角,直二面角,6平面与平面垂直 (1)平面与平面垂直的定义 如果两个平面所成的二面角是 ,就说这两个平面互相垂直 (2)平面与平面垂直的判定定理 如果一个平面经过另一个平面的 ,那么这两个平面互相垂直 (3)平面与平面垂直的性质定理 如果两个平面互相垂直,那么在一个平面内垂直于它们 的直线垂直于另一个 平面,直二面角,一条垂线,交线,1(2010扬州中学高三考试)设、为互不重合的平面,m、n为互不重合 的直线,给出下列四个命题:若m,n,则mn;若 m,n,m,n,则;若,

9、m, n,nm,则n;若m,mn,则n.其中正 确命题的序号为_ 答案:,2已知、是不同的两个平面,直线a,直线b,命题p:a与b无 公共点;命题q:,则p是q的_条件 解析:若a、b无公共点,则、既可平行,也可相交, 故p q. 若,即“ab或a、b异面”,即“a、b无公共点”, 即pq. 由知p是q的必要而不充分条件 答案:必要不充分,3(2010洛阳市高三考试)设m,n是不同的直线,是不同的平面,有 以下四个命题: 若mn,n,则m;若m,n,m,n,则 ;若m,n,则mn;若,m,则m. 其中真命题的个数是_ 解析:是真命题 答案:1,4已知平面,l,P是空间一点,且P到平面、的距离分

10、 别是1、2,则点P到l的距离为_ 解析:如图,PO平面PAB,lPO. PO就是P到直线l的距离 ,PAOB为矩形,PO . 答案:,5平行四边形的一个顶点A在平面内,其余顶点在的同侧,已知其中有 两个顶点到的距离分别为1和2,那么剩下的一个顶点到平面的距离可 能是:1;2;3;4. 以上结论正确的为_(写出所有正确结论的编号) 答案:,判定两个平面平行除了定义之外常用的判定方法有两个,一个是用两个平面平行的判定定理,判定两个平面平行,另一个是用结论“垂直于同一条直线的两个平面平行”判定两个平面平行,【例1】在正方体ABCDA1B1C1D1中,求证:平面A1BD平面CB1D1. 思路点拨:证

11、平面A1BD内的两条相交直线平行于平面CB1D1. 证明:由正方体ABCDA1B1C1D1知,A1B1綊AB, AB綊CD,A1B1綊CD.四边形A1B1CD为平行四边形A1DB1C. 而B1C面CB1D1,A1D面CB1D1. 同理,BD平面CB1D1,且A1DBDD. 平面A1BD平面CB1D1.,变式1:如果两个平面分别平行于第三个平面,那么这两个平面互相平行 已知:,. 求证:. 证法一:如图,作两个相交平面分别与、交于a、c、e和b、d、f.,证法二:作直线a,使a, ,a.,a. 直线a垂直于平面、又垂直于,.,【例2】已知a和b是异面直线,且ab,a平面,b平面,求证:b. 思路

12、点拨:构造一个过b与a垂直的平面或找一条在内与b平行的直线 证法一:如图(1),过b上一点P作a的垂线PQ,b与PQ确定平面, ab,aPQ,a.又a,且b.b.,证法二:如图(2),在b上任取一点M,作MN于N,直线b与MN确定一个平面,设为. a,MN,aMN.又ab,bMN.设c,且MN,c,MNc. 又MNb,MNc,且MN、b、c,bc,而b,c,b.,变式2:如图,平面,线段AB分别交、于M、N两点,线段AD分别交 、于C、D两点,线段BF分别交、于F、E两点,AM9,MN11, NB15,SFMC78,求END的面积,解:ABADA,经过AB、AD可确定平面ABD. MC、ND分

13、别为平面ABD与、的交线,MCND. 同理,FMEN,则FMCEND. SEND 78100.,【例3】(1)已知ABC中,ABC90,P为ABC所在平面外一点,PAPBPC. 求证:平面PAC平面ABC. (2)如图,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等 边三角形,已知BD2AD8,AB2DC4 . 设M是PC上的一点,证明:平面MBD平面PAD; 求四棱锥PABCD的体积,思路点拨:(1)证PO平面ABC,(2)因为两平面垂直与M点位置无关,所以在平面MBD内一定有一定直线垂直于平面PAD,考虑证明BD平面PAD.四棱锥底面为一梯形,高为P到面ABCD的距离

14、(1)证明:取AC的中点为O,连接OP、OB,AOOC,PAPC,POAC.ABC90,OBOA.又PBPA,POPO, POBPOA.POOB. PO平面ABC.平面PAC平面ABC.,(2)解:在ABD中,AD4,BD8,AB4 , AD2BD2AB2.ADBD.又面PAD面ABCD, 面PAD面ABCDAD,BD面ABCD,BD面PAD.又BD面BDM, 面MBD面PAD.,过P作POAD,面PAD面ABCD, PO面ABCD,即PO为四棱锥PABCD的高,又PAD是边长为4的等边三角形,PO2. 在底面四边形ABCD中,ABDC,AB2DC, 四边形ABCD为梯形在RtADB中,斜边A

15、B边上的高为 , 此即为梯形的高S四边形ABCD 24. VPABCD .,变式3:(南京市调研)如图,在四棱柱ABCDA1B1C1D1中,ABBCCA , ADCD1,平面AA1C1C平面ABCD. (1)求证:BDAA1; (2)若E为线段BC的中点,求证:A1E平面DCC1D1.,证明:(1)因为BABC,DADC,所以BD是线段AC的垂直平分线 所以BDAC.又平面AA1C1C平面ABCD, 平面AA1C1C平面ABCDAC,BD平面ABCD, 所以BD平面AA1C1C.因为AA1平面AA1C1C,所以BDAA1.,(2)因为ABBCCA ,DADC1,所以BACBCA60, DCA3

16、0.连接AE.因为E为BC的中点,所以CE , 在AEC中,易知EAC30. 所以EACDCA,所以AEDC. 因为DC平面DCC1D1,AE平面DCC1D1 所以AE平面DCC1D1.,在棱柱ABCDA1B1C1D1中,AA1DD1. 因为DD1平面DCC1D1,AA1平面DCC1D1,所以AA1平面DCC1D1. 因为AA1平面AA1E,AE平面AA1E,AA1AEA, 所以平面AA1E平面DCC1D1. 因为A1E平面AA1E,所以A1E平面DCC1D1.,【规律方法总结】,1解决线面平行、面面平行问题,要切实把握转化的思想方法: 线线平行 线面平行 面面平行 2证明平面和平面平行的方法

17、: (1)利用定义证,即采用反证法;(2)利用判定定理 3垂直关系的转化:,在证明两平面垂直时一般先从现有直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直故熟练掌握“线线垂直”、“线面垂直”、“面面垂直”间的转化条件是解决这类问题的关键,【例4】已知,是三个互不重合的平面,l是一条直线,给出下列四个命题: 若,l,则l;若l,l,则;若l上有两个点到的距离相等,则l; 若,则.其中正确命题的序号是_.,【错因分析】,解本题可能出现的错误就是对空间点、线、面位置关系的判定定

18、理和性质定理掌握不清导致误判如对命题可能对线面平行关系不清,误以为线在平面内也算平行,认为命题正确;再如对点到平面的距离相等考虑不到点可能在平面两侧,认为命题正确,解:有直线l的可能;中可以过直线l作第三个平面与平面相交于直线m,根据线面平行的性质定理,知ml,又l,根据线面垂直的性质定理,得m ,再根据面面垂直的判定定理,得,故正确;中包含两个点在平面两侧的情况;在平面内作与和交线垂直的直线m,根据面面垂直的性质定理,得m,再过直线m作平面,这个平面与平面相交于直线n,根据面面平行的性质定理,知mn,根据线面垂直的性质定理,知n,再根据面面垂直的判定定理,知,故正确故填.,【答题模板】,这类关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论