




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1,第四章 弯 曲,2,41 平面弯曲的概念及梁的计算简图 42 剪力和弯矩 43 剪力方程和弯矩方程 剪力图和弯矩图 44 剪力、弯矩与分布荷载集度间的关系及应用 45 按叠加原理作弯矩图 46 平面刚架和曲杆的内力,第四章 弯 曲,3,弯曲概念,41 平面弯曲的概念及实例,一、弯曲的概念,1. 弯曲: 杆受垂直于轴线的外力或外力偶矩作用时,杆轴线的曲率发生变化,这种变形称为弯曲。,2. 梁:以弯曲变形为主的 构件通常称为梁。,4,3. 工程实例,弯曲概念,5,4.平面(对称)弯曲:杆件有一个包含轴线的纵向对称面,所有外力都在该对称面内,发生弯曲变形后,轴线将变为该对称面内的一条曲线。,6,
2、非对称弯曲 若梁不具有纵向对称面,或者,梁虽具有纵对称面但外力并不作用在对称面内,这种弯曲则统称为非对称弯曲。 下面几章中,将以平面(对称)弯曲为主,讨论梁的应力和变形计算。,7,二、梁的计算简图,梁的支承条件与载荷情况一般都比较复杂,为了便于分析计算,应进行必要的简化,抽象出计算简图。,1. 梁本身的简化 通常取梁的轴线来代替梁,而不考虑梁的截面形状。,2. 载荷简化 作用于梁上的载荷(包括支座反力)可简化为三种类型: 集中力、集中力偶和分布载荷。,8,3. 支座简化 固定铰支座 2个约束,1个自由度。 如:桥梁下的固定支座,止推滚珠轴承等。,可动铰支座 1个约束,2个自由度。 如:桥梁下的
3、辊轴支座,滚珠轴承等。,9,固定端 3个约束,0个自由度。 如:游泳池的跳水板支座,木桩下端的支座等。,4. 梁的三种基本形式,简支梁,悬臂梁,10,外伸梁,5. 静定梁与超静定梁,静定梁:由静力平衡方程可求出支反力,如上述三种基本 形式的静定梁。 超静定梁:由静力平衡方程不能求出全部支反力。,11,42 梁的剪力和弯矩,一、弯曲梁横截面上的内力:,弯曲内力,例1已知:如图,P,a,b, l。 求:距A端x处横截面上内力。,l,A,A,B,B,解:求外力,b,12,弯曲内力,求内力截面法 取截面以左部分:,A,Fs,M,M,Fs,取截面以右部分:,C,C,13,弯曲梁横截面上的内力,1. 弯矩
4、:M 构件受弯时,横截面上其作用面垂直于横截面的内力偶矩。 弯矩等于截面以左(或以右)所有外力对截面形心的力矩的代数和。 2. 剪力:Fs 构件受弯时,横截面上作用线平行于截面并通过截面形心的内力。 剪力Fs等于截面以左(或以右)所有横向力的代数和。,14,弯曲内力,3.剪力、弯矩的正负规定:,剪力Fs: 绕研究对象顺时针转为正剪力;反之为负。,弯矩M:使梁弯成凹形的为正弯矩;使梁弯成凸形的为负弯矩。,Fs(),Fs(+),M(+),M(),左上(右下) 剪力为正,右上(左下) 剪力为负,左顺(右逆),弯矩为(); 反之弯矩为()。,15,例2:求图(a)所示梁1-1、2-2截面处的内力。,解
5、:截面法求内力。 1-1截面处截取的分离体 如图(b)示。,图(a),二、例题,Fs1,A,M1,图(b),弯曲内力,16,2-2截面处截取的分离体如图(c),图(a),q,FS2,B,M2,弯曲内力,图(c),17,弯曲内力,1. 内力方程:内力与截面位置坐标(x)间的函数关系式。,2. 剪力图和弯矩图:,43 剪力方程和弯矩方程 剪力图和弯矩图,18,弯曲内力,例3 求下列各图示梁的内力方程并画出内力图。,解:求支反力,写出内力方程,P,YO,L,根据方程画内力图讨论:不求支座反力,写出剪力、弯矩方程。,Fs,M,x,x,P,PL,P,(),(),19,弯曲内力,解:写出内力方程,根据方程
6、画内力图,L,q,Fs,x,x,qL,L,x,M,(),(),20,弯曲内力,解:求支反力,内力方程,q,RA,根据方程画内力图,RB,x,x,(+),(+),(),M,x,Fs,21,解: 求支座反力 写出剪力、弯矩方程 AC段: , CB段: , 画剪力图、弯矩图,m,L,a,b,(),(),(),22,弯曲内力,一、 剪力、弯矩与分布载荷间的关系 (x)为正,为负。 剪力与分布载荷间的关系:,对dx 段进行平衡分析,有:,43(补) 剪力、弯矩与分布载荷集度间的关系及应用,q(x),q(x),M(x)+d M(x),FS(x)+d FS(x),FS(x),M(x),dx,A,y,x,23
7、,弯曲内力,q(x),M(x)+d M(x),FS(x)+dFS(x),FS(x),M(x),dx,A,弯矩与分布载荷间的关系: 弯矩、剪力与分布载荷间的关系:,24,二、剪力、弯矩与外力间的关系,外力,无分布载荷段,均布载荷段,集中力,集中力偶,Fs图特征,M图特征,水平直线,斜直线,突变,无变化,斜直线,x,M,增函数,x,M,降函数,抛物线,折角,突变,弯曲内力,M,x,25,弯曲内力,直接作图法: 利用剪力、弯矩和载荷间的关系及特殊点的剪力、弯矩值来作图的方法。,例4 画图示梁的剪力图和弯矩图.,解: 利用内力和外力的关系及 特殊截面的内力值来作图。,特殊截面: 端截面、分区截面(外力
8、变化截面)和极值所在截面等。,26,弯曲内力,BA段:剪力图为水平线,弯矩图为斜直线 B截面: A截面:,AC段:剪力图为斜直线,弯矩图为二次抛物线,分区点A无集中力和集中力偶,故A截面两侧剪力值相等,弯矩值相等 C截面:,故C点为M 图极值点,q0,故该截面M为极小值,Fs,x,qa2,x,M,B,C,27,弯曲内力,例5 画图示梁的剪力图和弯矩图。,解:求支反力,截面A :,截面B左:,截面B右:,截面C左:,M极值截面 :,截面C右:,截面D:,q,qa2,qa,RA,RD,Fs,x,qa/2,qa/2,qa/2,A,B,C,D,qa2/2,x,M,qa2/2,qa2/2,3qa2/8,
9、x,弯曲内力,例5 画图示梁的剪力图和弯矩图。,弯曲内力,例5 画图示梁的剪力图和弯矩图。,28,课堂练习,画图示梁的剪力图和弯矩图。 (a) (b),A,B,C,a,2a,A,B,C,a,2a,29,A,B,C,(+),(+),(-),(-),(a),30,(+),(-),(-),(-),A,B,C,(b),31,4.3(补)按照叠加原理做弯矩图,一、叠加原理: 在线弹性范围内,小变形条件下,当结构上同时作用几个载荷时,各个载荷所引起的内力是各自独立的,互不影响的。这时,各个载荷与其所引起的内力成线性关系,叠加各个载荷单独作用于结构而引起的某一内力,就得到这些载荷共同作用时的该内力。,弯曲内
10、力,32,弯曲内力,二、用叠加原理画弯矩图的步骤:,分别作出各项荷载单独作用下梁的弯矩图; 将其相应的纵坐标叠加即可(注意:不是图形的简单拼凑)。,33,弯曲内力,例6按叠加原理作弯矩图(AB=L,力P作用在梁AB的中点处)。,q,P,P,=,+,A,A,A,B,B,B,x,x,M,=,+,(),M1,(),(),34,趣味题:一宽4米的水沟之上横跨一长6米的窄跳板,两体重都为800的同伴欲过此沟。已知跳板允许的最大弯矩不能超过800N.m。试说明两人采取何种方法,可安全过沟。,1m,1m,4m,35,弯曲内力,三、对称性与反对称性的应用: 对称结构在对称载荷作用下,S图反对称,M图对称;对称
11、结构在反对称载荷作用下,S图对称,M图反对称。 对称结构结构的几何形状尺寸、支承条件和刚度都对称于某一轴。对称载荷载荷的作用位置、大小和方向也都对称于结构的对称轴。反对称载荷载荷的作用位置和大小对称于结构的对称轴,但方向却是反对称的。,36,RA,RB,x,(+),(+),(),M,x,Fs,对称结构在对称载荷作用下,S图反对称,M图对称。,37,对称结构在反对称载荷作用下,S图对称,M图反对称。,(),(),(),(),(),38,弯曲内力,例7 作图示梁的剪力图和弯矩图。,P,PL,PL,0.5P,0.5P,0.5P,0.5P,P,0,0.5P,0.5P,0.5P,P,39,弯曲内力,P,
12、PL,PL,0.5P,0.5P,0.5P,0.5P,P,0,M,x,M1,x,M2,x,0.5PL,PL,0.5PL,0.5PL,(),(),(),(),40,弯曲内力,43(补) 平面刚架和曲杆的内力,一、平面刚架,1. 平面刚架:由轴线在同一平面内、不同取向的杆件,相互之间刚性连接而组成的结构。如万能材料试验机的活动框架,门窗框架,自行车的车架等。 2特点:刚架的每两个组成部分在其连接处夹角始终保持不变,这种连接点称为刚节点。外力作用在刚架轴线平面内时,各杆的内力有:FS 、M、FN。,41,弯曲内力,例8 试作图示刚架的内力图。,P1,P2,a,l,A,B,C,FN图,P2,FS图,P1
13、,P1,P1a,M 图,P1a,P1a+ P2 l,42,课堂练习:画图示刚架的弯矩图,43,44,弯曲内力,二、平面曲杆:轴线为一平面曲线的杆件,如活塞环、链条环的圆环部分等。外力作用在曲杆轴线平面内时,曲杆的内力情况与平面刚架相同。,例9 已知:图示曲杆的P及R 。求曲杆的内力。,P,解:曲杆的横截面为径向截面, 以圆心角为的横截面mm右侧外力来计算mm截面的弯矩。 规定:使轴线曲率增加的弯矩为正,反之为负。剪力、轴力的正、负号规定与梁相同。,A,B,45,弯曲内力,一、内力的直接求法: 求任意截面 A上的内力时,以 A 点左侧部分为研究对象,内力计算式如下,其中Pi 、 Pj 均为 A
14、点左侧的所有向上和向下的外力。,剪力方程和弯矩方程、剪力图和弯矩图,弯曲内力小结、习题课,46,弯曲内力,剪力、弯矩与分布荷载间的关系:,q(x),二、 简易作图法: 利用内力和外力的关系及特殊截面的内力值来作图的方法。,47,弯曲内力,三、 叠加原理: 多个载荷同时作用于结构而引起的某一内力等于每个载荷单独作用于结构而引起的该内力的代数和。,四、对称性与反对称性的应用: 对称结构在对称载荷作用下,FS图反对称,M图对称;对称结构在反对称载荷作用下,FS图对称,M图反对称。,48,弯曲内力,例10 绘制下列图示梁的弯矩图。,=,+,x,M1,x,M2,=,+,2Pa,2Pa,Pa,(1),49,弯曲内力,(2),PL/2,=,+,=,+,PL/2,PL/4,PL/2,PL/2,50,弯曲内力,(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《人工智能应用:机器学习基础与应用教案》
- 专利使用权协议
- 将进酒:古典诗歌情感探究教案
- 自然选择的作用和含义深度解析教学教案
- 保护动物呼唤行动议论文(7篇)
- 生物化学分子生物学在线试题
- 汽车维修行业服务标准与规范
- 航空航天器制造产业报告表
- 一场激烈的辩论赛事件描写(15篇)
- 中医药服务与乡村社区健康治理融合模式
- 人教版九年级物理 14.3能量的转化和守恒(学习、上课课件)
- 2024年网络安全知识竞赛考试题库500题(含答案)
- 江苏省徐州市贾汪区2023-2024学年七年级上学期期中考试数学试卷(含解析)
- 《港口粉尘在线监测系统建设技术规范(征求意见稿)》编制说明
- 品质巡检个人工作计划
- 医院采购委员会管理制度
- 设备管道 防腐保温施工方案
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 校车安全行车记录表
- QCSG1204009-2015电力监控系统安全防护技术规范
- 出租车安全教育
评论
0/150
提交评论