【全程复习方略】(浙江专用)2013版高考数学 2.7幂函数配套课件 理 新人教A版_第1页
【全程复习方略】(浙江专用)2013版高考数学 2.7幂函数配套课件 理 新人教A版_第2页
【全程复习方略】(浙江专用)2013版高考数学 2.7幂函数配套课件 理 新人教A版_第3页
【全程复习方略】(浙江专用)2013版高考数学 2.7幂函数配套课件 理 新人教A版_第4页
【全程复习方略】(浙江专用)2013版高考数学 2.7幂函数配套课件 理 新人教A版_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第七节 幂函数,三年1考 高考指数: 1.了解幂函数的概念; 2.结合函数y=x,y=x2,y=x3,y= ,y= 的图象,了解它们的变化情况.,1.高考主要考查幂函数的概念、图象与性质,单独考查的频率较低. 2.常与函数的性质及二次函数、指数函数、对数函数等知识交汇命题. 3.题型多以选择题、填空题的形式出现,属低中档题.,1.幂函数的概念 (1)解析式:_ (2)自变量:_ (3)幂指数:_ (4)幂的系数:_,y=x,x,1,【即时应用】 (1)判断下列函数是否是幂函数.(请在括号内填“是”或“否”) y= ( ) y=2x-1( ) y=(x-1)2( ) y= ( ) (2)已知点M

2、( )在幂函数f(x)的图象上,则f(x)的表达式为_.,【解析】(2)设f(x)=x(R),则 , 即 . ,得=-3,f(x)=x-3= . 答案:(1)是 否 否 是 (2)f(x)=,2.幂函数的图象 幂函数y=x、y= 、y=x2、y=x-1、y=x3的图象如下:,y=x,y=x2,y=x3,y=x2,y=x-1,y=x-1,【即时应用】 (1)判断下列命题是否正确.(请在括号内填“”或“”) 幂函数的图象都经过点(1,1)和点(0,0);( ) 幂函数的图象不可能在第四象限;( ) n=0时,函数y=xn的图象是一条直线;( ) 幂函数y=xn,当n0时是增函数;( ) 幂函数y=

3、xn,当n0时,在第一象限内函数值随x值的增大而 减小. ( ),(2)图中所示曲线为幂函数y=xn在第一象限的图象,则c1、c2、c3、c4的大小关系是_.,【解析】(1)当0时,幂函数不过点(0,0),故错,正确.当x=0时无意义,所以错.当n=2时,函数在定义域上不单调,所以错,正确. (2)由幂函数的图象特点知,当自变量x1时,幂指数大的函数值较大,故有c1c2c4c3. 答案:(1) (2)c1c2c4c3,3.幂函数y=x,y=x2,y=x3,y= ,y=x-1的性质,R,R,R,0,+ ),R,0,+ ),R,0,+ ),奇,偶,奇,非奇非偶,奇,增,增,增,(1,1),【即时应

4、用】 (1)判断下列函数在(-,0)上是否是单调递减的函数(请在括号中填“是”或“否”). f(x)=x-2( ),f(x)=x-1( ), f(x)= ( ),f(x)=x3( ) (2)设-1,1, ,3,则使函数y=x的定义域为R且为奇函数的所有值为_.,【解析】(1)结合各函数的简图可知在(-,0)上单调递减. (2)经验证知1,3符合. 答案:(1)否 是 否 否 (2)1,3,幂函数概念的应用 【方法点睛】 1.幂函数解析式的结构特征 (1)指数为常数; (2)底数为自变量x; (3)幂系数为1.,2.判定及应用幂函数的方法 要判断一个函数是否为幂函数,只需判断该函数的解析式是否满

5、足1中的三个特征. 【提醒】区分幂函数与指数函数的关键是自变量的位置在底数上还是在指数上.,【例1】已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x): (1)是幂函数; (2)是幂函数,且是(0,+)上的增函数; (3)是正比例函数; (4)是反比例函数. 【解题指南】利用幂函数必须满足的三个特征,构建关于m的式子求解(1)(2);利用正比例函数、反比例函数的定义,构建关于m的方程,求解(3)(4).,【规范解答】(1)f(x)是幂函数,故m2-m-1=1,即m2-m-2=0,解得m=2或m=-1. (2)若f(x)是幂函数,且又是(0,+)上的增函数, 则 m=-1. (

6、3)若f(x)是正比例函数, 则-5m-3=1,解得m= . 此时m2-m-10,故m= . (4)若f(x)是反比例函数,则-5m-3=-1, 则m= ,此时m2-m-10,故m= .,【互动探究】若本例中的函数f(x)为二次函数,则m为何值? 【解析】若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m-10,故m=-1.,【反思感悟】幂函数y=x(R),其中为常数,其本质特征是以幂的底x为自变量,指数为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.应当注意并不是任意的一次函数、二次函数都是幂函数,如y=x+1,y=x2-2x等都不是幂函数.,【变式训练】已知f(x)

7、=(m2+2m) ,m为何值时,f(x)是: (1)正比例函数; (2)反比例函数; (3)二次函数; (4)幂函数 【解析】(1)若f(x)=(m2+2m) 为正比例函数,则 解之得:m=1;,(2)若f(x)=(m2+2m) 为反比例函数,则 解之得:m=1; (3)若f(x)=(m2+2m) 为二次函数,则 解之得:m= ; (4)若f(x)=(m2+2m) 为幂函数,则 m2+2m=1,解之得:m= .,幂函数的图象与应用 【方法点睛】 幂函数y=x图象的特征 (1)的正负:0时,图象过原点和(1,1),在第一象限的图象上升;1时,曲线下凸; 01时,曲线上凸;0时,曲线下凸.,(3)

8、幂函数的图象最多只能出现在两个象限内; (4)如果幂函数的图象与坐标轴相交,则交点一定是原点.,【例2】若点( )在幂函数f(x)的图象上,点(2, )在幂函 数g(x)的图象上,定义h(x)= 试求函数h(x) 的最大值以及单调区间. 【解题指南】本题是求函数h(x)的最大值以及单调区间,只需作出其图象,数形结合求解即可,但由于在条件中已知函数h(x)在相应段上的解析式,所以,在求解方法上,应在每一段上求最大值及函数的单调区间,同时要注意函数端点值,【规范解答】设幂函数为f(x)=x,因为点( )在f(x)的图象 上,所以 ,所以=2,即f(x)=x2;又设g(x)=x,点 (2, )在g(

9、x)的图象上,所以(2)= ,所以=2, 即g(x)=x2.在同一直角坐标系中画出函数f(x)与g(x)的图象,,如图所示:,-1,O,y,x,1,1,f(x),g(x),g(x),f(x),则有:h(x)= 根据图象可知:函数的最 大值等于1,单调递增区间是(,1)和(0,1),单调递减区 间是(1,0)和(1,+).,【反思感悟】解决与幂函数图象有关的问题,常利用其单调性、奇偶性、最值(值域)等性质去确认与应用,而与幂函数有关的函数的性质的研究,常利用其相应幂函数的图象,数形结合求解.,【变式训练】幂函数y= (mZ)的图 象如图所示,则m的值为( ) (A)0(B)1 (C)2(D)3

10、【解析】选C.y= (mZ)的图象与坐标轴没有交点,m2- 4m0,即0m4, 又函数的图象关于y轴对称,且mZ, m2-4m为偶数,因此m=2.,幂函数的性质与应用 【方法点睛】 1.比较幂值大小的类型及方法 (1)当幂的底数相同,指数不相同时,可以利用指数函数的单调性比较; (2)当幂的底数不同,指数相同时,可以利用幂函数的单调性比较;,(3)当幂的底数与指数都不同时,一种方法是作商,比较商值与1的大小关系,确定两个幂值的大小关系;另一种方法是找中介值,即找中间量,通过比较两个幂值与中间量的大小,确定两幂值的大小关系; (4)比较多个幂值的大小,一般也采用中间量法,即先判断每个幂值与0、1

11、等数的大小关系,据此将它们分成若干组,然后将同一组内的各数再比较大小,最后确定各数间的大小关系.,2.幂函数y=x的性质 (1)定义域、值域及奇偶性,要视的具体值而定. (2)当0时,幂函数在(0,+)上是增函数,当0时,幂函数在(0,+)上是减函数.,【例3】(1)试比较0.40.2,0.20.2,20.2,21.6的大小. (2)已知幂函数y=x3m-9(mN*)的图象关于y轴对称,且在(0, +)上函数值随x的增大而减小,求满足 的a的取值范围. 【解题指南】(1)前三个同指数的幂值用幂函数y=x0.2的单调性比较,而后两个同底数的幂值利用指数函数y=2x的单调性比较. (2)利用幂函数

12、的性质,构建出m的不等式,并求出m的值,再根据其单调性,由关于a的已知不等式,构建a的不等式,从而求出a的范围.,【规范解答】(1)因为函数y=x0.2在R上为增函数, 且0.20.42,0.20.2 0.40.220.2, 又函数y=2x在R上为增函数,且0.21.6, 20.221.6,0.20.20.40.220.221.6. (2)函数在(0,+)上递减, 3m-90,m3, mN*,m=1,2. 又函数的图象关于y轴对称,3m-9为偶数,,当m=1时,3m-9=-6为偶数, 当m=2时,3m-9=-3为奇数, m=1, . 而y= 在(-,0),(0,+)上均为减函数, 等价于 a+

13、13-2a0或0a+13-2a或 a+103-2a,解得a-1或 , a的取值范围是a|a-1或 .,【互动探究】若满足本例(2)中条件的幂函数为f(x),讨论函数g(x)=af(x)6 的奇偶性(其中a,bR). 【解析】由本例(2)的解析知f(x)= , f(x)6=x-2= , g(x)= -bx3,则g(-x)= +bx3. 当a0,b0时,g(x)为非奇非偶函数; 当a=0,b0时,g(x)为奇函数; 当a0,b=0时,g(x)为偶函数; 当a=0,b=0时,g(x)既是奇函数又是偶函数.,【反思感悟】1.有关幂值的大小比较,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.

14、2.本例(2)集幂函数的概念、图象及单调性、奇偶性于一体,综合性较强,解答该类问题的关键是弄清幂函数的概念及性质,构建待求参数的方程或不等式并注意对参数的讨论,来求解问题.,【变式备选】1.已知函数f(x)= . (1)求f(x)的单调区间; (2)比较f(-)与f( )的大小. 【解析】(1)f(x)= ,其 图象可由幂函数y=x-2向左平移2个单位,再 向上平移1个单位得到,如图,所以该函数在 (-2,+)上是减函数,在(-,-2)上是增函数.,(2)图象关于直线x=-2对称, 又-2-(-)=-2f( ).,2.已知幂函数f(x)= (mN*) (1)试确定该函数的定义域,并指明该函数在

15、其定义域上的单调 性; (2)若该函数还经过点( ),试确定m的值,并求满足条件f(2 a)f(a1)的实数a的取值范围.,【解析】(1)m2+m=m(m+1)(mN*), 而m与m+1中必有一个为偶数, m2+m为偶数, 函数f(x)= (mN*)的定义域为 0,+),并且该函数在0,+)上为增函数;,(2)函数还经过点( ), ,即 , m2+m=2,解得:m=1或m=2, 又mN*,m=1,f(x)= . 又f(2a)f(a1), 解得:1af(a1)的实数a的取值范围为a|1a .,【易错误区】幂函数图象与性质的应用误区 【典例】(2012南京模拟)已知幂函数y= (mZ)的图象与x轴

16、、y轴都无公共点,且关于y轴对称,则m的值为_,幂函数的解析式为_. 【解题指南】先根据幂函数的图象与x轴、y轴都无公共点这一条件构建关于m的不等式求出m的取值范围,再根据幂函数图象关于y轴对称,确定出m的具体值,从而得到幂函数的解析式.,【规范解答】因为幂函数y= (mZ)的图象与x轴、y轴都无公共点. 所以m2-2m-30,解得-1m3. 又mZ,m=-1,0,1,2,3,而y= 的图象又关于y轴对称,m2-2m-3为偶数. 当m=-1时,m2-2m-3=0,为偶数; 当m=0时,m2-2m-3=-3,为奇数;,当m=1时,m2-2m-3=-4,为偶数; 当m=2时,m2-2m-3=-3,为奇数; 当m=3时,m2-2m-3=0,为偶数. 综上m=-1,1,3. 故幂函数的解析式为y=x-4或y=1(x0). 答案:-1或1或3 y=x-4或y=1(x0),【阅卷人点拨】通过对试卷及阅卷数据分析与总结,我们可以得到以下误区警示和备考建议:,1.(2011陕西高考)函数y= 的图象是( ) 【解析】选B.因为当x1时,x ;当x=1时,x= ,所以A、C、D错误,故选B.,2.(2012哈尔滨模拟)幂函数f(x)=x3m-5(mN)在(0,+)上是减函数,且f(-x)=f(x),则m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论