




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章 数值积分方法,但是在许多实际问题经常遇到下列情况: (1)原函数存在但不能用初等函数表示; (2)原函数可以用初等函数表示,但结构复杂; (3)被积函数没有表达式,仅仅是一张函数表。,问题提出,解决以上情况的积分问题,最有效的办法为数 值积分法。此种方法是利用被积函数在一些离散 点处的函数值,而求得满足一定代数精度要求的 定积分近似值。,1,PPT学习交流,取左端点矩形近似,数值积分的思想:,分割、近似、求和,取右端点矩形近似,定积分几何意义:,曲边梯形的面积,2,PPT学习交流,数值积分公式的一般形式:,其中,求积节点,求积系数,仅与求积节点有关,求积公式的截断误差或余项:,3,PP
2、T学习交流,5.1 插值型求积公式,思想,作n次Lagrange插值多项式:,设已知函数 在节点 上的函数值,4,PPT学习交流,余项,5,PPT学习交流,则有数值积分公式,这是用插值函数代替被积函数导出的定积分近似 计算公式,称为插值型数值积分公式。,6,PPT学习交流,n=1时的求积公式,一、梯形公式,7,PPT学习交流,这是用线性插值函数代替被积函数导出的定积分近似计算公式,称为梯形数值积分公式。,几何意义,8,PPT学习交流,截断误差:已知线性插值的截断误差为,积分中值定理: 连续、不变号,9,PPT学习交流,n=2时的求积公式,二、Simpson公式,将 a, b 二 等分,等分节点
3、 x0 = a ,x1 = (a +b)/2, x2 = b 作为积分节点,构造二次Lagrange插值多 项式L2(x):,10,PPT学习交流,这是用二次插值函数代替被积函数导出的定积分近似计算公式,称为辛普森数值积分公式。,几何意义:,11,PPT学习交流,Simpson积分公式的截断误差(定理):,积分中值定理: 连续、不变号,12,PPT学习交流,复合求积法 通常把积分区间等分成若干个子区间,在每个子区间上用低阶的求积公式(如梯形积分公式Simpson积分公式),对所有的子区间求和即得整个区间a, b上的积分公式,这种方法称为复合求积法。,5.2 复合求积公式,13,PPT学习交流,
4、5.2.1 复化梯形积分 将a, b分成若干小区间,在每个区间xi, xi+1上用梯形积分公式,再将这些小区间上的数值积分累加起来,就得到区间a, b上的数值积分。这种方法称为复化梯形积分。, 计算公式 将a, b n等分, h = xi+1- xi= (b -a)/n, xi = a + ih, i = 0,1,2,n,14,PPT学习交流,记为 T(h) 或 Tn( f ):,复化梯形公式的几何意义,小梯形面积之和近似,复化梯形公式,15,PPT学习交流,复化梯形公式的余项,设,由介值定理,余项估计式,16,PPT学习交流, 计算公式 将a, b 2m 等分, m 为积分子区间数,记 n
5、= 2m,n+1 为节点总数 ,h = xi+1- xi= (b -a)/n, xi = a + ih, i = 0,1,2,n,5.2.2 复化Simpson公式:,17,PPT学习交流,复化Simpson公式,复化Simpson公式的几何意义,小抛物面积之和近似,系数首尾为1,奇数点为4,偶数点为2,18,PPT学习交流,复化Simpson公式的余项,设,由介值定理,余项估计式,19,PPT学习交流,例: 分别利用复化梯形公式、复化Simpson公式计算 积分 的近似值,要求按复化Simpson公 式计算时误差不超过 。,解:,首先来确定步长,复化Simpson公式的余项:,20,PPT学
6、习交流,本题 的求法:,由归纳法知,21,PPT学习交流,解不等式得,将区间 8等分,分别采用复化Simpson、梯形公式,22,PPT学习交流,复化梯形公式(n=8),复化Simpson公式(n=4),23,PPT学习交流,代数精度的判别方法,如果求积公式 对一切不高于m次的多项式都恒成立,而对于某个m+1次多项式不能精确成立,则称该求积公式具有m次代数精度。,定理 求积公式 具有次m代数精度的充要条件是 为 时求积公式精确成立,而 为 时求积公式不能成为等式。,5.3 数值积分公式的代数精度和 Gauss求积公式,24,PPT学习交流,例2 见p73的例5.5,25,PPT学习交流,Gauss求积公式,一、 Gauss积分问题的提法,前述的求积公式中求积节点是取等距节点,求积系数计算方便,但代数精度要受到限制;,为了提高代数精度,需要适当选择求积节点:,当求积节点个数确定后,不管这些求积节点如何选 取,求积公式的代数精度最高能达到多少?,具有最高代数精度的求积公式中求积节点如何选取?,积分公式的一般形式:,26,PPT学习交流,形如 的插值型求积公式的代数精度最高不超过2n+1次。,定理,27,PPT
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《药品市场营销学》课程标准
- 农庄转让帐篷合同范本
- 化肥区域授权合同范本
- 上海电子营销咨询合同范例
- 余姚市房地产经纪合同范本
- 接触网中级工题库与参考答案
- 化工总控工高级测试题及参考答案
- 道路交通安全模拟试题含参考答案
- 个人安全与社会责任心得体会
- 公司收购资产合同范本
- 喷涂设备点检表
- GB/T 2831-2009光学零件的面形偏差
- 广东省佛山市《综合基础知识》事业单位国考真题
- 02 第2章 城市与城市化-城市管理学
- 六年级上册英语教案-Culture 2 Going Green 第二课时 广东开心英语
- 警察叔叔是怎样破案的演示文稿课件
- 2019石景山初三一模语文试题及答案
- 尿液有形成分形态学检查与临床意义课件
- 09式 新擒敌拳 教学教案 教学法 图解
- CAD术语对照表
- 学术论文的写作与规范课件
评论
0/150
提交评论