版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-,1,3.2结型场效应管,3.3场效管应用原理,3.1MOS场效应管,第3章场效应管,-,2,概述,场效应管是另一种具有正向受控作用的半导体器件。它体积小、工艺简单,器件特性便于控制,是目前制造大规模集成电路的主要有源器件。,场效应管与三极管主要区别:,场效应管输入电阻远大于三极管输入电阻。,场效应管是单极型器件(三极管是双极型器件)。,场效应管分类:,-,3,3.1MOS场效应管,N沟道MOS管与P沟道MOS管工作原理相似,不同之处仅在于它们形成电流的载流子性质不同,因此导致加在各极上的电压极性相反。,-,4,3.1.1增强型MOS场效应管,N沟道EMOSFET结构示意图,-,5,N沟道E
2、MOS管外部工作条件,VDS0(保证漏衬PN结反偏)。,U接电路最低电位或与S极相连(保证源衬PN结反偏)。,VGS0(形成导电沟道),N沟道EMOS管工作原理,-,6,N沟道EMOSFET沟道形成原理,假设VDS=0,讨论VGS作用,VGS越大,反型层中n越多,导电能力越强。,-,7,VDS对沟道的控制(假设VGSVGS(th)且保持不变),VDS很小时VGDVGS。此时W近似不变,即Ron不变。,由图VGD=VGS-VDS,因此VDSID线性。,若VDS则VGD近漏端沟道Ron增大。,此时RonID变慢。,-,8,当VDS增加到使VGD=VGS(th)时A点出现预夹断,若VDS继续A点左移
3、出现夹断区,此时VAS=VAG+VGS=-VGS(th)+VGS(恒定),若忽略沟道长度调制效应,则近似认为l不变(即Ron不变)。,因此预夹断后:,VDSID基本维持不变。,-,9,若考虑沟道长度调制效应,则VDS沟道长度l沟道电阻Ron略。,因此VDSID略。,由上述分析可描绘出ID随VDS变化的关系曲线:,曲线形状类似三极管输出特性。,-,10,MOS管仅依靠一种载流子(多子)导电,故称单极型器件。,三极管中多子、少子同时参与导电,故称双极型器件。,利用半导体表面的电场效应,通过栅源电压VGS的变化,改变感生电荷的多少,从而改变感生沟道的宽窄,控制漏极电流ID。,MOSFET工作原理:,
4、-,11,由于MOS管栅极电流为零,故不讨论输入特性曲线。,共源组态特性曲线:,伏安特性,转移特性与输出特性反映场效应管同一物理过程,它们之间可以相互转换。,-,12,NEMOS管输出特性曲线,非饱和区,特点:,ID同时受VGS与VDS的控制。,当VGS为常数时,VDSID近似线性,表现为一种电阻特性;,当VDS为常数时,VGSID,表现出一种压控电阻的特性。,沟道预夹断前对应的工作区。,因此,非饱和区又称为可变电阻区。,-,13,数学模型:,此时MOS管可看成阻值受VGS控制的线性电阻器:,VDS很小MOS管工作在非饱区时,ID与VDS之间呈线性关系:,其中,W、l为沟道的宽度和长度。,CO
5、X(=/OX)为单位面积的栅极电容量。,注意:非饱和区相当于三极管的饱和区。,-,14,饱和区,特点:,ID只受VGS控制,而与VDS近似无关,表现出类似三极管的正向受控作用。,沟道预夹断后对应的工作区。,考虑到沟道长度调制效应,输出特性曲线随VDS的增加略有上翘。,注意:饱和区(又称有源区)对应三极管的放大区。,-,15,数学模型:,若考虑沟道长度调制效应,则ID的修正方程:,工作在饱和区时,MOS管的正向受控作用,服从平方律关系式:,其中,称沟道长度调制系数,其值与l有关。,通常=(0.0050.03)V-1,-,16,截止区,特点:,相当于MOS管三个电极断开。,沟道未形成时的工作区,条
6、件:,VGSVGS(th),ID=0以下的工作区域。,IG0,ID0,击穿区,VDS增大到一定值时漏衬PN结雪崩击穿ID剧增。,VDS沟道l对于l较小的MOS管穿通击穿。,-,17,由于MOS管COX很小,因此当带电物体(或人)靠近金属栅极时,感生电荷在SiO2绝缘层中将产生很大的电压VGS(=Q/COX),使绝缘层击穿,造成MOS管永久性损坏。,MOS管保护措施:,分立的MOS管:各极引线短接、烙铁外壳接地。,MOS集成电路:,D1D2一方面限制VGS间最大电压,同时对感生电荷起旁路作用。,-,18,NEMOS管转移特性曲线,VGS(th)=3V,VDS=5V,转移特性曲线反映VDS为常数时
7、,VGS对ID的控制作用,可由输出特性转换得到。,VDS=5V,转移特性曲线中,ID=0时对应的VGS值,即开启电压VGS(th)。,-,19,衬底效应,集成电路中,许多MOS管做在同一衬底上,为保证U与S、D之间PN结反偏,衬底应接电路最低电位(N沟道)或最高电位(P沟道)。,若|VUS|,耗尽层中负离子数,因VGS不变(G极正电荷量不变),ID,根据衬底电压对ID的控制作用,又称U极为背栅极。,阻挡层宽度,表面层中电子数,-,20,P沟道EMOS管,N沟道EMOS管与P沟道EMOS管工作原理相似。,即VDS0,P沟道:VDS|VGS(th)|,,|VDS|VGSVGS(th)|,|VGS|
8、VGS(th)|,,饱和区(放大区)工作条件,|VDS|VGS(th)|,,非饱和区(可变电阻区)数学模型,-,26,FET直流简化电路模型(与三极管相对照),场效应管G、S之间开路,IG0。,三极管发射结由于正偏而导通,等效为VBE(on)。,FET输出端等效为压控电流源,满足平方律方程:,三极管输出端等效为流控电流源,满足IC=IB。,-,27,3.1.4小信号电路模型,MOS管简化小信号电路模型(与三极管对照),rds为场效应管输出电阻:,由于场效应管IG0,所以输入电阻rgs。,而三极管发射结正偏,故输入电阻rbe较小。,与三极管输出电阻表达式rce1/(ICQ)相似。,-,28,MO
9、S管跨导,通常MOS管的跨导比三极管的跨导要小一个数量级以上,即MOS管放大能力比三极管弱。,-,29,计及衬底效应的MOS管简化电路模型,考虑到衬底电压vus对漏极电流id的控制作用,小信号等效电路中需增加一个压控电流源gmuvus。,gmu称背栅跨导,工程上,为常数,一般=0.10.2。,-,30,MOS管高频小信号电路模型,当高频应用、需计及管子极间电容影响时,应采用如下高频等效电路模型。,-,31,场效应管电路分析方法与三极管电路分析方法相似,可以采用估算法分析电路直流工作点;采用小信号等效电路法分析电路动态指标。,3.1.5MOS管电路分析方法,场效应管估算法分析思路与三极管相同,只
10、是由于两种管子工作原理不同,从而使外部工作条件有明显差异。因此用估算法分析场效应管电路时,一定要注意自身特点。,估算法,-,32,MOS管截止模式判断方法,假定MOS管工作在放大模式:,放大模式,非饱和模式(需重新计算Q点),非饱和与饱和(放大)模式判断方法,a)由直流通路写出管外电路VGS与ID之间关系式。,c)联立解上述方程,选出合理的一组解。,d)判断电路工作模式:,若|VDS|VGSVGS(th)|,若|VDS|VGSVGS(th),,VGSVGS(th),,假设成立。,-,34,小信号等效电路法,场效应管小信号等效电路分法与三极管相似。,利用微变等效电路分析交流指标。,画交流通路;,
11、将FET用小信号电路模型代替;,计算微变参数gm、rds;,注:具体分析将在第4章中详细介绍。,-,35,3.2结型场效应管,JFET结构示意图及电路符号,-,36,N沟道JFET管外部工作条件,VDS0(保证栅漏PN结反偏),VGS0(保证栅源PN结反偏),3.2.1JFET管工作原理,-,37,VGS对沟道宽度的影响,若VDS=0,-,38,VDS很小时VGDVGS,由图VGD=VGS-VDS,因此VDSID线性,若VDS则VGD近漏端沟道Ron增大。,此时RonID变慢,VDS对沟道的控制(假设VGS一定),此时W近似不变,即Ron不变,-,39,当VDS增加到使VGD=VGS(off)
12、时A点出现预夹断,若VDS继续A点下移出现夹断区,此时VAS=VAG+VGS=-VGS(off)+VGS(恒定),若忽略沟道长度调制效应,则近似认为l不变(即Ron不变)。,因此预夹断后:,VDSID基本维持不变。,-,40,利用半导体内的电场效应,通过栅源电压VGS的变化,改变阻挡层的宽窄,从而改变导电沟道的宽窄,控制漏极电流ID。,JFET工作原理:,综上所述,JFET与MOSFET工作原理相似,它们都是利用电场效应控制电流,不同之处仅在于导电沟道形成的原理不同。,-,41,NJFET输出特性,非饱和区(可变电阻区),特点:,ID同时受VGS与VDS的控制。,3.2.2伏安特性曲线,线性电阻:,-,42,饱和区(放大区),特点:,ID只受VGS控制,而与VDS近似无关。,数学模型:,在饱和区,JFET的ID与VGS之间也满足平方律关系,但由于JF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遗传算法流程图
- 教育部学科分类与代码(全部)
- 2024购销合同下载范文
- 2024临时工解聘协议书临时工聘用合同协议书
- 自然资源安全生产
- 规划课题申报范例:“双高校”绩效评价研究(附可修改技术路线图)
- 深圳大学《知识产权法学》2021-2022学年期末试卷
- 副主任医师定期考核述职报告范文(7篇)
- 关于班组长安全承诺书3篇
- 军训决心书(集锦15篇)
- 东营港加油、LNG加气站工程环评报告表
- 2024年日历(打印版每月一张)
- 车用动力电池回收利用 管理规范 第2部分:回收服务网点征求意见稿编制说明
- 新剑桥少儿英语第六册全册配套文本
- 科学预测方案
- 职业生涯规划网络与新媒体专业
- T-WAPIA 052.2-2023 无线局域网设备技术规范 第2部分:终端
- 市政管道开槽施工-市政排水管道的施工
- 初中八年级英语课件Reading Giant pandas-“江南联赛”一等奖2
- 人工智能在教育行业中的应用与管理
- 心衰合并胸腔积液的护理Ppt
评论
0/150
提交评论