![全国高职教材高等数学1-3ppt课件_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-5/24/aa9b3c45-8bd9-4d75-9237-9b4016ad0035/aa9b3c45-8bd9-4d75-9237-9b4016ad00351.gif)
![全国高职教材高等数学1-3ppt课件_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-5/24/aa9b3c45-8bd9-4d75-9237-9b4016ad0035/aa9b3c45-8bd9-4d75-9237-9b4016ad00352.gif)
![全国高职教材高等数学1-3ppt课件_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-5/24/aa9b3c45-8bd9-4d75-9237-9b4016ad0035/aa9b3c45-8bd9-4d75-9237-9b4016ad00353.gif)
![全国高职教材高等数学1-3ppt课件_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-5/24/aa9b3c45-8bd9-4d75-9237-9b4016ad0035/aa9b3c45-8bd9-4d75-9237-9b4016ad00354.gif)
![全国高职教材高等数学1-3ppt课件_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-5/24/aa9b3c45-8bd9-4d75-9237-9b4016ad0035/aa9b3c45-8bd9-4d75-9237-9b4016ad00355.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.,第三节,数列的极限,一、数列极限的定义,二、收敛数列的性质,三、极限存在准则,机动目录上页下页返回结束,.,一、数列极限的定义,引例:,设有半径为r的圆,用其内接正n边形的面积,逼近圆面积S.,如图所示,可知,当n无限增大时,无限逼近S(刘徽的割圆术),数学语言描述:,当时,总有,正整数,机动目录上页下页返回结束,.,定义:,自变量取正整数的函数称为数列,记作,或,称为通项(一般项).,及常数a有下列关系:,若数列,即,则称该数列,的极限为a,记作,或,此时也称数列收敛,否则称数列发散,几何解释:,),(,机动目录上页下页返回结束,.,例如:,趋势不定,收敛,发散,机动目录上页下页返回结束
2、,.,例1.已知,证明数列,的极限为1.,证:,欲使,即,只要,因此,取,则当,时,就有,故,机动目录上页下页返回结束,.,例2.已知,证明,证:,欲使,只要,即,取,则当,时,就有,故,说明:,不一定取最小的N.,N与有关,但不唯一.,也可由,取,机动目录上页下页返回结束,.,例3.设,证明等比数列,的极限为0.,证:,欲使,只要,即,亦即,因此,取,则当nN时,就有,故,机动目录上页下页返回结束,.,二、收敛数列的性质,1.收敛数列的极限唯一.,证:用反证法,假设,及,且,取,因,故存在N1,使当nN1时,从而,同理,因,故存在N2,使当nN2时,从而,则当nN时,满足的不等式,矛盾.,故
3、假设不真!,因此收敛数列的极限必唯一.,机动目录上页下页返回结束,.,例4.证明数列,是发散的.,证:用反证法.,假设数列,则有唯一极限a存在.,收敛,取,则存在N,使当nN时,有,但因,交替取值1与1,而此二数不可能同时落在,长度为1的开区间,内,因此该数列发散.,机动目录上页下页返回结束,.,2.收敛数列一定有界.,证:设,取,则,当,时,,有,从而有,取,则有,由此证明收敛数列必有界.,说明:此性质反过来不一定成立.,数列,虽有界但不收敛.,机动目录上页下页返回结束,.,3.收敛数列的保号性.,若,且,时,,有,,对a0,证:,取,若数列从某项起,推论:,(用反证法证明),机动目录上页下
4、页返回结束,.,4.收敛数列的任一子数列收敛于同一极限.,证:设数列,是数列,的任一子数列.,若,则,当,时,有,现取正整数K,使,于是当,时,有,*,从而有,由此证明,机动目录上页下页返回结束,.,说明:,由此性质可知,若数列有两个子数列收敛于不同的极限,则原数列一定发散,例如,,发散!,三、极限存在准则,夹逼准则;单调有界准则;柯西审敛准则.,机动目录上页下页返回结束,.,1.夹逼准则(准则1),证:,由条件(2),当,时,,当,时,,则当,时,有,由条件(1),即,故,机动目录上页下页返回结束,.,2.单调有界数列必有极限(准则2),(证明略),机动目录上页下页返回结束,.,*3.柯西极限存在准则(柯西审敛原理),数列,极限存在的充要条件是:,存在正整数N,使当,时,有,证:“必要性”.,设,则,使当,时,有,因此,“充分性”证明从略.,机动目录上页下页返回结束,.,内容与小结,1.数列极限的“N”定义及应用,2.收敛数列的性质:,唯一性;有界性;保号性;,任一子数列收敛于同一极限,3.极限存在准则:,夹逼准则;单调有界准则;柯西准则,机动目录上页下页返回结束,.,思考与练习,1.如何判断极限不存在?,方法1.找一个趋于的子数列;,方法2.找两个收敛于不同极限的子数列.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球离网房车行业调研及趋势分析报告
- 2025-2030全球高脉冲能量皮秒激光器行业调研及趋势分析报告
- 月龄婴儿情绪情感与社会性亲子活动设计创造性抚触游戏讲解
- 2025【合同范本】建筑工程设计协议书
- 蔬菜配送合作合同范本
- 分期付款合同模板集锦
- 会签单合同模板
- 全新对讲机服务合同下载
- 劳务出资合伙协议合同
- 个人租车租赁合同范本
- 区域经理年终工作总结汇报
- 2019版新人教版高中英语必修+选择性必修共7册词汇表汇总(带音标)
- 初中八年级音乐-劳动号子《军民大生产》
- 中层领导的高绩效管理
- 小小银行家-儿童银行知识、理财知识培训
- 机械基础知识竞赛题库附答案(100题)
- 阅读理解特训卷-英语四年级上册译林版三起含答案
- 国库集中支付培训班资料-国库集中支付制度及业务操作教学课件
- 屋面及防水工程施工(第二版)PPT完整全套教学课件
- 2023年上海青浦区区管企业统一招考聘用笔试题库含答案解析
- 2023年高一物理期末考试卷(人教版)
评论
0/150
提交评论