




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连2025届高三教学质量检测试题考试(一)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B.C.或 D.2.已知,则()A.2 B. C. D.33.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.1204.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.5.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.116.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.16007.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为()A. B.2 C.4 D.8.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.9.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.10.下列判断错误的是()A.若随机变量服从正态分布,则B.已知直线平面,直线平面,则“”是“”的充分不必要条件C.若随机变量服从二项分布:,则D.是的充分不必要条件11.已知函数,满足对任意的实数,都有成立,则实数的取值范围为()A. B. C. D.12.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.根据如图所示的伪代码,输出的值为______.14.已知实数,满足,则目标函数的最小值为__________.15.已知数列{an}的前n项和为Sn,向量(4,﹣n),(Sn,n+3).若⊥,则数列{}前2020项和为_____16.若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的普通方程;(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.18.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.19.(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.20.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.21.(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.22.(10分)已知,,不等式恒成立.(1)求证:(2)求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
首先求出集合,再根据补集的定义计算可得;【详解】解:∵,解得∴,∴.故选:D本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.2.A【解析】
利用分段函数的性质逐步求解即可得答案.【详解】,;;故选:.本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.3.C【解析】
可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.4.D【解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.5.A【解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.6.B【解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B本题主要考查频率直方图的应用,属基础题.7.C【解析】
设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.8.A【解析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.9.D【解析】
由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.10.D【解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布:,则,故选项正确,不符合题意;对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.11.B【解析】
由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是.故选:B.本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.12.D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.本题主要考查等比数列的性质的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.7【解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=10>9,循环结束,输出:i=7.故答案为:7本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.14.-1【解析】
作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题15.【解析】
由已知可得•4Sn﹣n(n+3)=0,可得Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.可得:2().利用裂项求和方法即可得出.【详解】∵⊥,∴•4Sn﹣n(n+3)=0,∴Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.,满足上式,.∴2().∴数列{}前2020项和为2(1)=2(1).故答案为:.本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.16.【解析】
二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.∵点Q到底面的距离与到点P的距离之比为正常数k,∴,则,∵动点Q的轨迹是抛物线,∴,即则.∴二面角的平面角的余弦值为解得:().故答案为:.本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)【解析】分析:(1)用代入法消参数可得直线的普通方程,由公式可化极坐标方程为直角坐标方程;(2)把直线的参数方程代入曲线的直角坐标方程,其中参数的绝对值表示直线上对应点到的距离,因此有,,直接由韦达定理可得,注意到直线与圆相交,因此判别式>0,这样可得满足的不等关系,由此可求得的取值范围.详解:(1)直线的参数方程为,普通方程为,将代入圆的极坐标方程中,可得圆的普通方程为,(2)解:直线的参数方程为代入圆的方程为可得:(*),且由题意,,.因为方程(*)有两个不同的实根,所以,即,又,所以.因为,所以所以.点睛:(1)参数方程化为普通方程,一般用消参数法,而消参法有两种选择:一是代入法,二是用公式;(2)极坐标方程与直角坐标方程互化一般利用公式;(3)过的直线的参数方程为(为参数)中参数具有几何意义:直线上任一点对应参数,则.18.(1)(2)【解析】
(1)根据共线得到,利用正弦定理化简得到答案.(2)根据余弦定理得到,,再利用余弦定理计算得到答案.【详解】(1)∵与共线,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.则或(舍去).∴,∵∴.在中,由余弦定理得:,∴.本题考查了向量共线,正弦定理,余弦定理,意在考查学生的综合应用能力.19.(1)(2)证明见解析【解析】
(1)根据公式得到,计算得到答案.(2),根据裂项求和法计算得到,得到证明.【详解】(1)由已知得时,,故.故数列为等比数列,且公比.又当时,,..(2)..本题考查了数列通项公式和证明数列不等式,意在考查学生对于数列公式方法的综合应用.20.(1)见解析(2)见解析【解析】
(1)连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直线平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因为侧面底面ABCD,由面面垂直的性质定理可知平面ABCD,所以,因为底面ABCD是菱形,所以,因为,所以平面SDB.本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.21.(1);(2)4【解析】
(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1)∵,∴,由正弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版基站租赁与5G网络升级改造合同
- 二零二五年环保产业股权担保与污染治理协议
- 二零二五年办公耗材电商渠道合作采购合同
- 二零二五年度夜间经济带灯箱广告投放协议
- 2025版粮油储备与企业采购对接合同协议书
- 二零二五版教育信息化项目设计与实施合同
- 二零二五年美容行业教育培训机构转售合同书
- 二零二五年度保温材料节能产品认证与销售合同
- 二零二五年度煤炭运输合同电子化管理规范
- 四川营山县市级名校2026届中考联考语文试题含解析
- 水温料购销合同
- DZ∕T 0097-2021 工程地质调查规范(1:50 000)(正式版)
- 中医内科新技术新项目
- MOOC 金融学-湖南大学 中国大学慕课答案
- AQ-T 3002-2021阻隔防爆橇装式加油(气)装置技术要求
- JTG F90-2015 公路工程施工安全技术规范
- 寿衣行业前景分析
- 浙江省科学小升初分班考试卷汇总一(含答案)
- 社会保险业务档案管理规定
- 昌平房地产市场分析报告
- 投标报价得分计算表Excele
评论
0/150
提交评论