




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省蒙自市一中2025年高三数学试题检测试题卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.2.设i为数单位,为z的共轭复数,若,则()A. B. C. D.3.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.4.若函数有且仅有一个零点,则实数的值为()A. B. C. D.5.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直6.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]7.设,满足,则的取值范围是()A. B. C. D.8.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.9.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.设,满足约束条件,则的最大值是()A. B. C. D.11.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.12.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.已知,那么______.14.已知数列的前项和为且满足,则数列的通项_______.15.已知数列的前项和为,,且满足,则数列的前10项的和为______.16.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.18.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).19.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.20.(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.21.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.22.(10分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.2.A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.3.A【解析】
点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.4.D【解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,,,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,,即,解得或.①当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.5.C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系6.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.7.C【解析】
首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.8.A【解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.本题考查复数的四则运算及虚部的概念,计算过程要注意.9.A【解析】
根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可.【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,,若,则数列为单调递减数列,则必存在,使得当时,,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,,此时,,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题.10.D【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.11.D【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.12.B【解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】∵,∴,,∴.故答案为:.本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.14.【解析】
先求得时;再由可得时,两式作差可得,进而求解.【详解】当时,,解得;由,可知当时,,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.15.1【解析】
由得时,,两式作差,可求得数列的通项公式,进一步求出数列的和.【详解】解:数列的前项和为,,且满足,①当时,,②①-②得:,整理得:(常数),故数列是以为首项,2为公比的等比数列,所以(首项不符合通项),故,所以:,故答案为:1.本题主要考查数列的通项公式的求法及应用,数列的前项和的公式,属于基础题.16.【解析】
根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时,取得最小值因而故答案为:本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)存在,【解析】
(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点.【详解】(1)由题可得∴,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,,∴,,∴若以为直径的圆经过点,则,∴,化简得,∴,解得或因为与不重合,所以舍.所以直线的方程为.本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.18.(1)证明见解析;(2)2【解析】
(1)在中,利用勾股定理,证得,又由题设条件,得到,利用线面垂直的判定定理,证得平面,进而得到;(2)设三棱台和三棱柱的高都为上、下底面之间的距离为,根据棱台的体积公式,列出方程求得,得到,即可求解.【详解】(1)由题意,在中,,,所以,可得,因为,可得.又由,,平面,所以平面,因为平面,所以.(2)因为,可得,令,,设三棱台和三棱柱的高都为上、下底面之间的距离为,则,整理得,即,解得,即,又由,所以.本题主要考查了直线与平面垂直的判定与应用,以及几何体的体积公式的应用,其中解答中熟记线面位置关系的判定定理与性质定理,以及熟练应用几何体的体积公式进行求解是解答的关键,着重考查了推理与计算能力,属于基础题.19.(1).(2)答案见解析【解析】
(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.20.(1);(2)或.【解析】
(1)联立直线方程与双曲线方程,消去,得到关于的一元二次方程,根据根的判别式,即可求出结论;(2)设,由(1)可得关系,再由直线l过点,可得,进而建立关于的方程,求解即可.【详解】(1)双曲线C与直线l有两个不同的交点,则方程组有两个不同的实数根,整理得,,解得且.双曲线C与直线l有两个不同交点时,k的取值范围是.(2)设交点,直线l与y轴交于点,,.,即,整理得,解得或或.又,或时,的面积为.本题考查直线与双曲线的位置关系、三角形面积计算,要熟练掌握根与系数关系解决相交弦问题,考查计算求解能力,属于中档题.21.(1)(2)定值为0.【解析】
(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.22.(1)(2)【解析】
(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漫画的启示主题班会课件
- 2025青海海西州格尔木市紧密型城市医疗集团招聘工作人员39人笔试参考题库附带答案详解
- 湖南省五下信息技术课件
- 水利工程建设完工验收质量监督报告
- 小学生课件英语
- 家畜饲养工岗位实习报告
- 胶化工岗位实习报告
- 印染洗涤工职业技能模拟试卷含答案
- 保健刮痧师公司招聘笔试题库及答案
- 有线广播电视机线员安全技术操作规程
- 绿化养护服务投标方案(技术标)
- 医院食堂餐饮服务承包
- SC-21-002亿航EH216-S型无人驾驶航空器系统专用条件
- TB-T 3356-2021铁路隧道锚杆-PDF解密
- 螺旋测微器读数练习(含答案)-文档
- 热射病患者的护理个案
- JJG 635-2011二氧化碳红外气体分析器
- 《铬污染土壤异位修复技术指南》(T-CAEPI 37-2021)
- 四年级【语文(统编版)】牛和鹅(第二课时)课件
- 物理 八年级上校本作业
- 角膜板层裂伤查房
评论
0/150
提交评论