




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常宁一中2023年高三1月份统一考试(数学试题理)试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.82.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交3.已知单位向量,的夹角为,若向量,,且,则()A.2 B.2 C.4 D.64.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.65.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.86.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.7.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()A.1 B. C. D.8.向量,,且,则()A. B. C. D.9.已知i是虚数单位,则1+iiA.-12+32i10.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.11.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.12.已知,,,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.14.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.15.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为___________.16.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.18.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.19.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.20.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.21.(12分)已知满足,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)22.(10分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.2.D【解析】
通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.3.C【解析】
根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.4.A【解析】
由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.5.A【解析】
由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6.B【解析】
先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.7.C【解析】
对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,,故令,得当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.8.D【解析】
根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.9.D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。10.C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.11.D【解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.12.B【解析】,选B二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.14.【解析】
将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.15.【解析】
取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,,即,即,,.设,则,得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.16.5040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【解析】
试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为,,因为曲线在点处的切线方程为,所以解得.令,得,当时,,在区间内单调递减;当时,,在区间内单调递增.所以函数的单调递减区间为,单调递增区间为.(2)由(1)得,.由,得,即.要证,需证,即证,设,则要证,等价于证:.令,则,∴在区间内单调递增,,即,故.18.(1);(2)或.【解析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),又,或.【点睛】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.19.(1)证明见解析,;(2)证明见解析【解析】
(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【点睛】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.20.(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】
(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,当或时,,则单调递增,当时,,则单调递减,∴函数的单调递增区间为和,单调递减区间为(2)(Ⅰ)当时,所以在上无零点;(Ⅱ)当时,,①若,即,则是的一个零点;②若,即,则不是的零点(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以①当时,在上单调递增。又,所以(ⅰ)当时,在上无零点;(ⅱ)当时,,又,所以此时在上恰有一个零点;②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,,所以此时在上恰有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想21.见解析【解析】
选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.【详解】选择①时:,,故.根据正弦定理:,故,故.选择②时,,,故,为钝角,故无解.选择③时,,根据正弦定理:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 花岗岩石料采购合同范本
- 高压合同尾款结清协议书
- 顺义区市政供暖合同范本
- 第三方银行签约协议合同
- 领养孩子合同协议书样本
- 电力工程epc合同范本
- 门头租赁转让合同协议书
- 网络借贷居间方合同范本
- 甘肃平凉离婚协议书模板
- 第三方计量校准合同范本
- 2025年上海市公有非居住房屋租赁合同标准版本(2篇)
- 水厂反恐培训教材
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 市场营销学练习及答案(吴健安)
- 人教版三年级上册第一单元《时分秒》比较大小、单位换算、计算练习题
- 2024年秋新人教版七年级上册英语全册课件(新版教材)
- 贵州省水利投资(集团)有限责任公司招聘笔试题库2024
- 一般工商贸(轻工)管理人员安全生产考试题库(含答案)
- 水温料购销合同
- 护理查房(模板)
- DZ∕T 0097-2021 工程地质调查规范(1:50 000)(正式版)
评论
0/150
提交评论