2025届广东省茂名市信宜中学高三尖子生班3月调研考试数学试题_第1页
2025届广东省茂名市信宜中学高三尖子生班3月调研考试数学试题_第2页
2025届广东省茂名市信宜中学高三尖子生班3月调研考试数学试题_第3页
2025届广东省茂名市信宜中学高三尖子生班3月调研考试数学试题_第4页
2025届广东省茂名市信宜中学高三尖子生班3月调研考试数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省茂名市信宜中学高三尖子生班3月调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.2.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.633.已知数列是公差为的等差数列,且成等比数列,则()A.4 B.3 C.2 D.14.是虚数单位,则()A.1 B.2 C. D.5.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知向量,(其中为实数),则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知无穷等比数列的公比为2,且,则()A. B. C. D.8.已知,则()A. B. C. D.9.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A. B. C. D.11.集合的真子集的个数是()A. B. C. D.12.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().A.432 B.576 C.696 D.960二、填空题:本题共4小题,每小题5分,共20分。13.实数满足,则的最大值为_____.14.“六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.15.在中,内角所对的边分别为,若,的面积为,则_______,_______.16.已知集合,.若,则实数a的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.18.(12分)在直角坐标平面中,已知的顶点,,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.19.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:20.(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.21.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?22.(10分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.2.D【解析】

根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.3.A【解析】

根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.4.C【解析】

由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.5.D【解析】

利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.6.A【解析】

结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.7.A【解析】

依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。8.C【解析】

利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.9.C【解析】

根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{an}是等比数列,则,

若,则,即成立,

若成立,则,即,

故“”是“”的充要条件,

故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.10.C【解析】

求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.11.C【解析】

根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题.12.B【解析】

先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.【详解】首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;根据分类加法、分步乘法原理,得满足要求的排队方法数为种.故选:B.【点睛】本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】

画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如图所示,则当直线过点时直线的截距最大,z取最大值.由同理,,取最大值.故答案为:.【点睛】本题考查线性规划的线性目标函数的最优解问题.线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.14.【解析】

分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.故答案为:1.【点睛】本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.15.【解析】

由已知及正弦定理,三角函数恒等变换的应用可得,从而求得,结合范围,即可得到答案运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【详解】由已知及正弦定理可得,可得:解得,即,由面积公式可得:,即由余弦定理可得:即有解得【点睛】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案16.9【解析】

根据集合交集的定义即得.【详解】集合,,,,则a的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析【解析】

(1)根据已知可得,结合离心率和关系,即可求出椭圆的标准方程;(2)斜率不为零,设的方程为,与椭圆方程联立,消去,得到纵坐标关系,求出方程,令求出坐标,要证、、三点共线,只需证,将分子用纵坐标表示,即可证明结论.【详解】(1)由于,将代入椭圆方程,得,由题意知,即.又,所以,.所以椭圆的方程为.(2)解法一:依题意直线斜率不为0,设的方程为,联立方程,消去得,由题意,得恒成立,设,,所以,直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子,.所以,,三点共线.解法二:当直线的斜率不存在时,由题意,得的方程为,代入椭圆的方程,得,,直线的方程为.则,,,所以,即,,三点共线.当直线的斜率存在时,设的方程为,,,联立方程消去,得.由题意,得恒成立,故,.直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子所以.所以,,三点共线.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练掌握根与系数关系,设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.18.(1)();(2)证明见解析.【解析】

(1)设点,分别用表示、表示和余弦定理表示,将表示为、的方程,再化简即可;(2)设直线方程代入的轨迹方程,得,设点,,,表示出直线,取,得,即可证明直线过轴上的定点.【详解】(1)设,由已知,∴,∴(),化简得点的轨迹的方程为:();(2)由(1)知,过点的直线的斜率为0时与无交点,不合题意故可设直线的方程为:(),代入的方程得:.设,,则,,.∴直线:.令,得.直线过轴上的定点.【点睛】本题主要考查轨迹方程的求法、余弦定理的应用和利用直线和圆锥曲线的位置关系求定点问题,考查学生的计算能力,属于中档题.19.(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】

(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望.【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123.【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望.属于中档题.本题难点在于认识到.20.(1)整数的最大值为;(2)见解析.【解析】

(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,,令,对恒成立,所以,函数在上单调递增,,,,,故存在使得,即,从而当时,有,,所以,函数在上单调递增;当时,有,,所以,函数在上单调递减.所以,,,因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论