【世界卫生组织WHO】2024卫生领域人工智能伦理与治理多模态大模型指南_第1页
【世界卫生组织WHO】2024卫生领域人工智能伦理与治理多模态大模型指南_第2页
【世界卫生组织WHO】2024卫生领域人工智能伦理与治理多模态大模型指南_第3页
【世界卫生组织WHO】2024卫生领域人工智能伦理与治理多模态大模型指南_第4页
【世界卫生组织WHO】2024卫生领域人工智能伦理与治理多模态大模型指南_第5页
已阅读5页,还剩172页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Ethicsandgovernanceof

artificialintelligenceforhealth

Guidanceonlargemulti-modalmodels

worldHealthorganization

Ethicsandgovernanceof

artificialintelligenceforhealth

Guidanceonlargemulti-modalmodels

Ethicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

ISBN978-92-4-008475-9(electronicversion)

ISBN978-92-4-008476-6(printversion)

©WorldHealthOrganization2024

Somerightsreserved.ThisworkisavailableundertheCreativeCommonsAttribution-NonCommercial-ShareAlike3.0IGOlicence(CCBY-NC-SA3.0IGO;

/licenses/by-nc-sa/3.0/igo

).

Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited,asindicatedbelow.Inanyuseofthiswork,thereshouldbeno

suggestionthatWHOendorsesanyspecificorganization,productsorservices.TheuseoftheWHOlogois

notpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheWorldHealthOrganization(WHO).WHOisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.

AnymediationrelatingtodisputesarisingunderthelicenceshallbeconductedinaccordancewiththemediationrulesoftheWorldIntellectualProperty

Organization.(

/amc/en/mediation/rules/

).

Suggestedcitation.Ethicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels.Geneva:WorldHealthOrganization;2024.Licence:

CCBY-NC-SA3.0IGO

.

Cataloguing-in-Publication(CIP)data.CIPdataareavailableat

/iris

.

Sales,rightsandlicensing.TopurchaseWHOpublications,see

/bookorders

.Tosubmitrequestsforcommercialuseandqueriesonrightsandlicensing,see

/about/licensing

.

Third-partymaterials.Ifyouwishtoreusematerialfromthisworkthatisattributedtoathirdparty,suchastables,figuresorimages,itisyourresponsibilitytodeterminewhetherpermissionisneededforthatreuseandtoobtainpermissionfromthecopyrightholder.Theriskofclaimsresultingfrominfringementofanythird-

partyownedcomponentintheworkrestssolelywiththeuser.

Generaldisclaimers.ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofWHOconcerningthelegalstatusofany

country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

Dottedanddashedlinesonmapsrepresentapproximateborderlinesforwhichtheremaynotyetbefullagreement.

Thementionofspecificcompaniesorofcertainmanufacturers’productsdoesnotimplythattheyareendorsedorrecommendedbyWHOinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsand

omissionsexcepted,thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.

AllreasonableprecautionshavebeentakenbyWHOtoverifytheinformationcontainedinthispublication.

However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.InnoeventshallWHObeliablefordamagesarisingfromitsuse.

Graphicsdesign:JoannaSleigh(ETHZurich,Zurich,Switzerland)

Layout:ImprimerieCentrale(Luxembourg)

Contentsiii

Contents

Acknowledgements v

Abbreviations vii

Executivesummary viii

1Introduction 1

1.1SignificanceofLMMs 3

1.2WHOguidanceonethicsandgovernanceofAIforhealth 4

I.Applications,challengesandrisksofLMMs 7

2ApplicationsandchallengesofuseofLMMsinhealth 8

2.1Diagnosisandclinicalcare 8

2.2Patient-centredapplications 12

2.3Clericalfunctionsandadministrativetasks 16

2.4Medicalandnursingeducation 17

2.5Scientificandmedicalresearchanddrugdevelopment 17

3Riskstohealthsystemsandsocietyandethicalconcernsaboutuse

ofLMMs 20

3.1Healthsystems 20

3.2Compliancewithregulatoryandlegalrequirements 23

3.3Societalconcernsandrisks 24

II.EthicsandgovernanceofLMMsinhealthcareandmedicine 31

4Designanddevelopmentofgeneral-purposefoundationmodels

(LMMs) 34

4.1Riskstobeaddressedduringthedevelopmentofgeneral-

purposefoundationmodels(LMMs) 34

4.2Measuresdeveloperscantaketoaddressriskswithgeneral-

purposefoundationmodels(LMMs) 35

4.3Governmentlaws,policiesandpublicsectorinvestments 39

4.4Open-sourceLMMs 41

ivEthicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

5Provisionwithgeneral-purposefoundationmodels(LMMs) 45

5.1Riskstobeaddressedwhenprovidingahealth-careserviceor

applicationwithageneral-purposefoundationmodel(LMM) 45

5.2Measuresthatgovernmentscanintroducetoaddresssuchrisks

andethicalprinciplesthatshouldbeupheld 46

6Deploymentwithgeneral-purposefoundationmodels(LMMs) 53

6.1Riskstobeaddressedwhendeployingahealth-careserviceor

applicationwithageneral-purposefoundationmodel(LMM) 53

6.2On-goingresponsibilitiesofdevelopersandprovidersduring

deployment 54

6.3Responsibilitiesofdeployers 54

6.4Governmentprogrammesandpractices 55

7LiabilityforLMMs 58

8InternationalgovernanceofLMMs 60

References 62

Annex.Methods 77

Acknowledgementsv

Acknowledgements

DevelopmentofthisWorldHealthOrganization(WHO)guidancewasledbyAndreasReis

(co-leadoftheHealthEthicsandGovernanceunitintheDepartmentofResearchforHealth)andSameerPujari(DepartmentofDigitalHealthandInnovation),undertheoverallguidanceofJohnReeder(Director,ResearchforHealth),AlainLabrique(Director,DigitalHealthand

Innovation)andJeremyFarrar(ChiefScientist).

RohitMalpani(consultant,France)wastheleadwriter.Theco-chairsoftheWHOexpertgrouponethicsandgovernanceofAIforhealth,EffyVayena(ETHZurich,Switzerland)andParthaMajumder(IndianStatisticalInstituteandNationalInstituteofBiomedicalGenomics,India),providedoverallguidanceondraftingofthereportandleadershipoftheexpertgroup.

WHOisgratefultothefollowingindividualswhocontributedtodevelopmentofthisguidance.

WHOexpertgrouponethicsandgovernanceofAIforhealth

NajeebAlShorbaji,eHealthDevelopmentAssociation,Amman,Jordan;MariaPazCanales,

GlobalPartnersDigital,SantiagodeChile,Chile;ArisaEma,UniversityofTokyo,Tokyo,Japan;AmelGhouila,Bill&MelindaGatesFoundation,Seattle(WA),USA;JenniferGibson,WHO

CollaboratingCentreforBioethics,UniversityofToronto,Toronto,Canada;KennethGoodman,InstituteofBioethicsandHealthPolicy,UniversityofMiamiMillerSchoolofMedicines,Miami(FL),USA;MalavikaJayaram,DigitalAsiaHub,Singapore;DaudiJjingo,MakerereUniversity,

Kampala,Uganda;TzeYunLeong,NationalUniversityofSingapore,Singapore;AlexJohn

London,CarnegieMellonUniversity,Pittsburgh(PA),USA;ParthaMajumder,IndianStatisticalInstituteandNationalInstituteofBiomedicalGenomics,Kolkata,India;ThilidziMarwala,

UniversityofJohannesburg,Johannesburg,SouthAfrica;RoliMathur,IndianCouncilof

MedicalResearch,Bangalore,India;TimoMinssen,CentreforAdvancedStudiesinBiomedicalInnovationLaw,FacultyofLaw,UniversityofCopenhagen,Copenhagen,Denmark;Andrew

Morris,HealthDataResearchUK,London,UnitedKingdom;DanielaPaolotti,ISIFoundation,Turin,Italy;JeromeSingh,UniversityofKwa-ZuluNatal,Durban,SouthAfrica;Jeroenvan

denHoven,UniversityofDelft,Delft,Netherlands(Kingdomofthe);EffyVayena,ETHZurich,Zurich,Switzerland;RobynWhittaker,UniversityofAuckland,Auckland,NewZealand;andYiZeng,ChineseAcademyofSciences,Beijing,China.

Observers

DavidGruson,Luminess,Paris,France;LeeHibbard,CouncilofEurope,Strasbourg,France

viEthicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

Externalreviewers

OrenAsman,TelAvivUniversity,TelAviv,Israel;I.GlennCohen,HarvardLawSchool,Boston(MA),USA;AlexandrinePirlotdeCorbion,PrivacyInternational,London,UnitedKingdom;

RodrigoLins,FederalUniversityofPernambuco,Recife,Brazil;DougMcNair,DeputyDirector,IntegratedDevelopment,Bill&MelindaGatesFoundation,Seattle(WA),USA;Keymanthri

Moodley,StellenboschUniversity,CapeTown,SouthAfrica;AmirTal,TelAvivUniversity,TelAviv,Israel;TomWest,PrivacyInternational,London,UnitedKingdom.

Externalcontributors

Box2(EthicalconsiderationsfortheuseofLMMsbychildren)oftheguidancewasdraftedbyVijaythaMuralidharan,AlyssaBurgart,RoxanaDaneshjouandSherriRose,Stanford

University,Stanford(CA),USA.Box3(EthicalconsiderationsassociatedwithLMMsandtheirimpactonindividualswithdisabilities)oftheguidancewasdraftedbyYonahWelker,independentconsultant,Geneva,Switzerland.

Allexternalreviewers,expertsandcontributorsdeclaredtheirinterestsinlinewithWHOpolicies.Noneoftheinterestsdeclaredwereassessedtobesignificant.

WHO

ShadaAl-Salamah,TechnicalOfficer,DepartmentofDigitalHealthandInnovation,Geneva;

MariamOtmaniDelBarrio,Scientist,SpecialProgrammeonTropicalDiseasesResearch,

Geneva;MarceloD'Agostino,UnitChief,InformationSystemsandDigitalHealth,WHORegionalOfficefortheAmericas,Washington(DC);JeremyFarrar,ChiefScientist,Geneva;Clayton

Hamilton,TechnicalOfficer,WHORegionalOfficeforEurope,Copenhagen,Denmark;KanikaKalra,Consultant,DepartmentofDigitalHealthandInnovation,Geneva;AhmedMohamedAminMandil,Coordinator,ResearchandInnovation,WHORegionalOfficefortheEastern

Mediterranean,Cairo;IssaT.Matta,LegalAffairs,Geneva;JoseEduardoDiazMendoza,

Consultant,DepartmentofDigitalHealthandInnovation,Geneva;MohammedHassanNour,TechnicalOfficer,DepartmentofDigitalHealthandInnovation,WHORegionalOfficefor

theEasternMediterranean,Cairo;DeniseSchalet,TechnicalOfficer,DepartmentofDigitalHealthandInnovation,Geneva;YuZhao,TechnicalOfficer,DepartmentofDigitalHealthandInnovation,Geneva.

Acknowledgementsvii

Abbreviations

AIartificialintelligence

LMMlargemulti-modalmodelUSAUnitedStatesofAmerica

viiiEthicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

Executivesummary

ArtificialIntelligence(AI)referstothecapabilityofalgorithmsintegratedintosystems

andtoolstolearnfromdatasothattheycanperformautomatedtaskswithoutexplicit

programmingofeverystepbyahuman.GenerativeAIisacategoryofAItechniquesin

whichalgorithmsaretrainedondatasetsthatcanbeusedtogeneratenewcontent,suchastext,imagesorvideo.ThisguidanceaddressesonetypeofgenerativeAI,largemulti-modal

models(LMMs),whichcanacceptoneormoretypeofdatainputandgeneratediverseoutputsthatarenotlimitedtothetypeofdatafedintothealgorithm.IthasbeenpredictedthatLMMswillhavewideuseandapplicationinhealthcare,scientificresearch,publichealthanddrug

development.LMMsarealsoknownas“general-purposefoundationmodels”,althoughitisnotyetprovenwhetherLMMscanaccomplishawiderangeoftasksandpurposes.

LMMshavebeenadoptedfasterthananyconsumerapplicationinhistory.Theyarecompellingbecausetheyfacilitatehuman–computerinteractiontomimichumancommunicationandtogenerateresponsestoqueriesordatainputsthatmayappearhuman-likeandauthoritative.Withrapidconsumeradoptionanduptakeandinviewofitspotentialtodisruptcoresocial

servicesandeconomicsectors,manylargetechnologycompanies,start-upsandgovernmentsareinvestinginandcompetingtoguidethedevelopmentofgenerativeAI.

In2021,WHOpublishedcomprehensiveguidance

(1)

ontheethicsandgovernanceofAIfor

health.WHOconsulted20leadingexpertsinAI,whoidentifiedbothpotentialbenefitsand

potentialrisksofuseofAIinhealthcareandissuedsixprinciplesarrivedatbyconsensusforconsiderationinthepoliciesandpracticesofgovernments,developers,andprovidersthat

areusingAI.TheprinciplesshouldguidethedevelopmentanddeploymentofAIinhealthcarebyawiderangeofstakeholders,includinggovernments,publicsectoragencies,researchers,companiesandimplementers.Theprinciplesare:(1)protectautonomy;(2)promotehumanwell-being,humansafetyandthepublicinterest;(3)ensuretransparency,“explainability”andintelligibility;(4)fosterresponsibilityandaccountability;(5)ensureinclusivenessandequity;and(6)promoteAIthatisresponsiveandsustainable(Figure1).

WHOisissuingthisguidancetoassistMemberStatesinmappingthebenefitsandchallenges

associatedwithuseofLMMsforhealthandindevelopingpoliciesandpracticesfor

appropriatedevelopment,provisionanduse.Theguidanceincludesrecommendationsforgovernance,withincompanies,bygovernmentsandthroughinternationalcollaboration,alignedwiththeguidingprinciples.Theprinciplesandrecommendations,whichaccountfortheuniquewaysinwhichhumanscanusegenerativeAIforhealth,arethebasisof

thisguidance.

Executivesummaryix

Figure1:WHOconsensusethicalprinciplesforuseofAIforhealth

Protectautonomy

Ensuretransparency,

explainabilityand

intelligibility

Promotehuman

well-being,humansafetyandthepublicinterest

Fosterresponsibilityandaccountability

PromoteAIthatis

responsiveand

sustainable

Ensureinclusivenessandequity

Applications,challengesandrisksoflargemulti-modalmodels

ThepotentialapplicationsofLMMsinhealthcarearesimilartothoseofotherformsofAI,yethowLMMsareaccessedandusedisnew,withbothnovelbenefitsandrisksthatsocieties,healthsystemsandend-usersmaynotyetbepreparedtoaddressfully.Table1summarizesthemainapplicationsofLMMsandtheirpotentialbenefitsandrisks.

ThesystemicrisksassociatedwithuseofLMMsincluderisksthatcouldaffecthealthsystems(Table2).

BroaderregulatoryandsystemicriskscouldemergewithuseofLMMs.Oneconcern(being

examinedbyseveraldataprotectionauthorities)iswhetherLMMscomplywithexistinglegalorregulatoryregimes,includinginternationalhumanrightsobligations,andwithnational

dataprotectionregulations.AlgorithmsmightnotcomplywithsuchlawsbecauseofthewayinwhichdataarecollectedtotrainLMMs,themanagementandprocessingofdatathathavebeencollected(orputintoLMMsbyendusers),thetransparencyandaccountabilityofentitiesthatdevelopLMMs,andthepossibilitythatLMMs“hallucinate”.LMMscouldalsobenon-

compliantwithconsumerprotectionlaws.

BroadersocietalrisksassociatedwiththegrowinguseofLMMs(includingandbeyondtheuseofsuchalgorithmsinhealthcare)includethefactthatLMMsareoftendevelopedand

deployedbylargetechnologycompanies,duepartlytothesignificantcomputing,data,

humanandfinancialresourcerequiredfordevelopmentofLMMs.Thismayreinforcethe

dominanceofthesecompaniesvis-a-vissmallerenterprisesandgovernmentswithrespecttothedevelopmentanduseofAI,includingthefocusofAIresearchinthepublicandprivatesectors.Additionalconcernsaboutthepotentialdominanceoflargetechnologycompaniesincludeinsufficientcorporatecommitmenttoethicsandtransparency.Newvoluntary

xEthicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

Table1.PotentialbenefitsandrisksinvarioususesofLMMsinhealthcare

Use

Potentialorproposedbenefits

Potentialrisks

Diagnosisand

clinicalcare

Assistinmanagingcomplexcasesandreviewofroutinediagnoses

Reducethecommunicationworkloadofhealth-careproviders(“keyboardliberation”)

Providenovelinsightsandreportsfromvariousunstructuredformsofhealth

data

Inaccurate,incompleteorfalseresponses

Poorqualitytrainingdata

Bias(oftrainingdataandresponses)Automationbias

Degradationofskills(ofhealth-careprofessionals)

Informedconsent(ofpatients)

Patient-guideduse

Generateinformationtoimprove

understandingofamedicalcondition(asapatientorasacaregiver)

Virtualhealthassistant

Clinicaltrialenrolment

Inaccurate,incompleteorfalse

statements

ManipulationPrivacy

Lessinteractionbetweencliniciansandpatients

Epistemicinjustice

Riskofdeliveryofcareoutsidethehealthsystem

Clericaland

administrativetasks

Assistwithpaperworkand

documentationrequiredforclinicalcareAssistinlanguagetranslation

CompletionofelectronichealthrecordsDraftclinicalnotesafterapatientvisit

Inaccuraciesanderrors

Inconsistentresponsesdependingonprompts

Medical

andnursing

education

Dynamictextssuitedtoeachstudent’sneeds

Simulatedconversationtoimprovecommunicationandtopractiseindiversesituationsandwithdiversepatients

Responsestoquestionsaccompaniedbychain-of-thoughtreasoning

Contributetoautomationbias

Errorsorfalseinformationunderminethequalityofmedicaleducation

Newburdenoflearningdigitalskills

Scientific

research

anddrug

development

Generateinsightsfromscientificdataandresearch

Generatetextforuseinscientificarticles,manuscriptsubmissionorpeer-review

AnalyseandsummarizedataforresearchProofreading

Denovodrugdesign

Cannotholdalgorithmsaccountableforcontent

Algorithmsencodebiastowardsthe

perspectivesofhigh-incomecountriesGenerateinformationand/orreferencesthatdonotexist

Underminekeytenetsofscientificresearch,suchaspeerreview

Exacerbatedifferentialaccesstoscientificknowledge

Executivesummaryxi

Table2.RiskstohealthsystemsassociatedwithuseofLMMsinhealthcare

Typeofrisk

Description

OverestimationofthebenefitsofLMMs

Theremaybeatendencyto‘technologicalsolutionism’,orover-estimationofthebenefitsofLMMswhileignoringordownplayingchallengesinitsuse,includingitssafety,efficacyandutility.

Accessibilityandaffordability

EquitableaccesstoLMMsmaybelackingforseveralreasons,includingthe“digitaldivide”andsubscriptionfeestoaccessLMMs.

System-widebiases

Useofever-largerdatasetscouldincreasebiasesencodedinLMMs,whichcouldbeautomatedthroughoutahealth-caresystem.

Impactsonlabour

UseofLMMscouldleadtojoblossesinsomecountriesandrequirehealthworkerstoretrainandadjusttouseofLMMs.Dataannotationandfilteringcanleadtolowwagesandtountreatedpsychologicaldistress.

Dependenceofhealthsystemsonill-suitedLMMs

DependenceonLMMscouldmakehealthsystemsvulnerableifLMMsarenotmaintainedor(inlow-andmiddle-incomecountries)areupdatedonlyforuseinhigh-incomecountries.Furthermore,lackofpreservationandprotectionofprivacyandconfidentialitycouldunderminetrustinhealth-caresystemsbypeoplewhoarenotconfidentthattheirprivacywillbe

protected.

Cybersecurityrisks

MaliciousattacksorhackingcouldunderminesafetyandtrustintheuseofLMMsinhealthcare.

commitmentsbysuchcompanies,withoneanotherandwithgovernments,couldmitigate

severalrisksintheshort-termbutarenotanalternativetogovernmentaloversightthatmighteventuallybeenacted.

AnothersocietalriskisthecarbonandwaterfootprintsofLMMs,whichlikeotherformsofAI,requirebothsignificantenergyandcontributetoAI’sgrowingwaterfootprint.WhileLMMsandotherformsofAIcanprovideimportantsocietalbenefits,thegrowingcarbonfootprintmaybecomeamajorcontributortoclimatechange,andincreasingwaterconsumptioncanhaveafurthernegativeimpactinwater-stressedcommunities.Anothersocietalriskassociated

withtheemergenceofLMMsisthat,byprovidingplausibleresponsesthatareincreasinglyconsideredasourceofknowledge,LMMsmayeventuallyunderminehumanepistemic

authority,includinginthedomainsofhealthcare,scienceandmedicine.

EthicsandgovernanceofLMMsinhealthcareandmedicine

LMMscanbeconsideredproductsofaseries(orchain)ofdecisionsonprogrammingand

productdevelopmentbyoneormoreactors(Figure2).DecisionsmadeateachstageofanAIvaluechainmayhavebothdirectandindirectconsequencesonthosewhoparticipateinthedevelopment,deploymentanduseofLMMsdownstream.Thedecisionscanbeinfluencedandregulatedbygovernmentsbyenactingandenforcinglawsandpoliciesnationally,regionallyandglobally.

xiiEthicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

Figure2:Valuechainofthedevelopment,provisionanddeploymentofLMMs

Provision

Providers

•Companies

•Not-for-profitentities

•Academicinstitutions

•Healthproviders

•Developers(verticallyintegrated)

Adapt/integrateLMMs

•Finetuning

•Integrateintoso什waresystems

•Organizeintoaregulatedorverifiedformat(e.g.

withplug-ins)

CF

Deployment

Deployers

•MinistriesofHealth

•Pharmaceuticalcompanies

•Healthsystems

•Hospitals

•Individualproviders

•Developers(verticallyintegrated)

•Providers(verticallyintegrated)

UseLMMs

•Diagnosisandclinicalcare

•Patientcenteredcare

•Clericaland

administrativetasks

•Medicalandnursingeducation

•Scientificresearch

•Drugdevelopment

Development

Developers

•Largetechnologycompanies

•Smalltechnologycompanies

•Universities

•Scientificcollaborations

•Public-privateconsortiums

•Nationalhealthsystems

DevelopLMMs

•General-purpose

foundationmodels(largemulti-modalmodels)

•Healthormedical

domainspecific

foundationalmodels

•Healthsystemspecificfoundationalmodels

TheAIvaluechainoftenbeginsinalargetechnologycompany,referredtoasa“developer”

inthisguidance.Thedevelopercouldalsobeauniversity,asmallertechnologycompany,

nationalhealthsystems,public-privateconsortiumsorotherentitiesthathavetheresourcesandcapacitytouseseveralinputs,whichcomprisethe“AIinfrastructure”,suchasdata,

computingpowerandAIexpertise,todevelopgeneral-purposefoundationmodels(aterm

usedbygovernmentstodescribeLMMsinlegislationandregulation).Thesemodelscanbe

useddirectlytoperformvarious,oftenunanticipatedtasks,includingthoserelatedtohealthcare.Severalgeneral-purposefoundationmodelsaretrainedspecificallyforuseinhealthcareandmedicine.

Ageneral-purposefoundationmodelcanbeusedbyathirdparty(a“provider”)throughanactiveprogramminginterfaceforaspecificpurposeoruse.Thisinvolves(i)fine-tuninganewLMM,whichmayrequireadditionaltrainingofthefoundationmodel;(ii)integratingtheLMMintoapplicationsoralargersoftwaresystemtoprovideaservicetousers;or(iii)integrating

Executivesummaryxiii

componentsknownas“plug-ins”tochannel,filterandorganizetheLMMsintoformalorregulatedformatstogenerate“digestible”results.1

Thereafter,theprovidercanmarketaproductorservicebasedontheLMMtoacustomer(or“deployer”),suchasaministryofhealth,ahealth-caresystem,ahospital,apharmaceuticalcompanyorevenanindividual,suchasahealth-careprovider.Thecustomerwhoacquiresorlicensestheproductorapplicationmaythenuseitdirectlyforpatients,health-careproviders,otherentitiesinthehealthsystem,laypeopleorinitsownbusiness.Thevaluechaincanbe“verticallyintegrated”,sothatacompany(orotherentity,suchasanationalhealthsystem)

thatcollectsdataandtrainsageneral-purposefoundationmodelcanmodifytheLMMforaparticularuseandprovidetheapplicationdirectlytousers.

Governanceisameansforenshriningethicalprinciplesandhumanrightsobligationsthroughexistinglawsandpoliciesandthroughneworrevisedlaws,norms,internalcodesofpracticeandproceduresfordevelopersandinternationalagreementsandframeworks.

OnewayofframingthegovernanceofLMMsisinthethreestagesoftheAIvaluechain:(i)

thedesignanddevelopmentofgeneral-purposefoundationmodelsorLMMs;(ii)provisionofaservice,applicationorproductbasedonageneral-purposefoundationmodel;and(iii)deploymentofahealth-careserviceorapplication.Inthisguidance,eachphaseisexaminedwithrespecttothreeareasofenquiry:

•Whatrisks(describedabove)shouldbeaddressedateachstageofthevaluechain,andwhichactorsarebestplacedtoaddressthoserisks?

•Whatcanarelevantactordotoaddresstherisks,andwhichethicalprinciplesmustbeupheld?

•Whatistheroleofgovernment,includingrelevantlaws,policiesandregulations?

CertainriskscanbeaddressedateachphaseoftheAIvaluechain,andcertainactorsarelikelytoplaymoreimportantrolesinmitigatingeachriskandupholdingethicalvalues.Whilethereislikelytobedisagreementandtensionaboutwhereresponsibilityrestsbetweendevelopers,providersanddeployers,thereareclearareasinwhicheachactorisbestplacedoristheonlyentitywiththecapacitytoaddressapotentialoractualrisk.

Designanddevelopmentofgeneral-purposefoundationmodels(LMMs)

Duringthedesignanddevelopmentofgeneral-purposefoundationmodels,theresponsibilityrestswiththedevelopers.Governmentsbeartheresponsibilitytosetlawsandstandardstorequireorforbidcertainpractices.Section4ofthisguidanceprovidesrecommendationstohelpaddressrisksandmaximizebenefitsduringthedevelopmentofLMMs.

1CommunicationfromLeongTze-Yun,WHOexpertontheethicsandgovernanceofAIforhealth.

xivEthicsandgovernanceofartificialintelligenceforhealth.Guidanceonlargemulti-modalmodels

Provisionwithgeneral-purposefoundationmodels(LMMs)

Duringprovisionofaservic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论