




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省天门、仙桃、潜江2025届高三下学期联考试卷(一)数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.2.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.3.设是虚数单位,复数()A. B. C. D.4.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A. B. C. D.86.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.7.已知向量,,若,则()A. B. C.-8 D.88.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.10.已知,满足约束条件,则的最大值为A. B. C. D.11.已知函数,则()A. B. C. D.12.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若正实数x,y,满足x+2y=5,则x214.执行右边的程序框图,输出的的值为.15.过点,且圆心在直线上的圆的半径为__________.16.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.18.(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.19.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.20.(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.21.(12分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.22.(10分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..(1)求证:;(2)求平面与平面所成锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.2.C【解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.3.D【解析】
利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.4.C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.5.A【解析】
由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,.故选:A.【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.6.A【解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.7.B【解析】
先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.8.D【解析】
利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.9.B【解析】
设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.10.D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.11.A【解析】
根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.12.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立);故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13.8【解析】
分析:将题中的式子进行整理,将x+1当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.详解:x2-3x+1+2点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-------相乘,即可得结果.14.【解析】初始条件成立方;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.15.【解析】
根据弦的垂直平分线经过圆心,结合圆心所在直线方程,即可求得圆心坐标.由两点间距离公式,即可得半径.【详解】因为圆经过点则直线的斜率为所以与直线垂直的方程斜率为点的中点坐标为所以由点斜式可得直线垂直平分线的方程为,化简可得而弦的垂直平分线经过圆心,且圆心在直线上,设圆心所以圆心满足解得所以圆心坐标为则圆的半径为故答案为:【点睛】本题考查了直线垂直时的斜率关系,直线与直线交点的求法,直线与圆的位置关系,圆的半径的求法,属于基础题.16.【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)见解析【解析】
(1)连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直线平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因为侧面底面ABCD,由面面垂直的性质定理可知平面ABCD,所以,因为底面ABCD是菱形,所以,因为,所以平面SDB.【点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.18.(1)不需调整(2)列联表见解析;有的把握判断学生“选择化学科目”与“选择物理科目”有关(3)详见解析【解析】
(1)可估计高一年级选修相应科目的人数分别为120,2,推理得对应开设选修班的数目分别为15,1.推理知生物科目需要减少4名教师,化学科目不需要调整.(2)根据列联表计算观测值,根据临界值表可得结论.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,根据二项分布概率公式可得分布列和数学期望.【详解】(1)经统计可知,样本40人中,选修化学、生物的人数分别为24,11,则可估计高一年级选修相应科目的人数分别为120,2.根据每个选修班最多编排50人,且尽量满额编班,得对应开设选修班的数目分别为15,1.现有化学、生物科目教师每科各8人,根据每位教师执教2个选修班,当且仅当一门科目的选课班级总数为奇数时,允许这门科目的一位教师执教一个班的条件,知生物科目需要减少4名教师,化学科目不需要调整.(2)根据表格中的数据进行统计后,制作列联表如下:选物理不选物理合计选化学19524不选化学61016合计251540则,有的把握判断学生”选择化学科目”与“选择物理科目”有关.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,分布列如下:01230.3430.4410.1890.021数学期望为.【点睛】本题主要考查了离散型随机变量的期望与方差,考查独立性检验,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.(1)证明见解析;(2)最小值为1【解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.20.(1)见解析;(2)(﹣∞,0]【解析】
(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.【详解】(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)内递增,在(﹣,0)内递减,在(0,+∞)内递增,∴f(x)的极大值为,∴当x<0时,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,则g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,则h(x)在(0,+∞)上单调递增,且x→0+时,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,g′(x)>0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城投企业面试题目及答案
- 2025年上海半导体考试题及答案
- 2025年三基考试题库及答案技师
- 2025年上海教资考试试题及答案
- 2025年社工面试题及答案解析
- 村级安全协议书
- 村集体路协议书
- 林地续租协议书
- 果苗栽植协议书
- 2025年解放人才测试题及答案
- 2025年高考真题-化学(湖南卷) 含答案
- NB-T31022-2012风力发电工程达标投产验收规程
- 《工程化学》全套教学课件
- 2023年银行业法律法规与综合能力考试考试题库(真题整理)
- 光器件基础知识培训
- 孕期营养与体重管理PPT课件
- 金蝶kis专业版操作手册
- 施工中挖断水、电、通信光缆、煤气管道专项应急预案
- 乒乓球社团活动记录表(共9页)
- UC2845的应用与PWM变压器设计
- 高中数学:6.4《反三角函数》教案(2)(沪教版高一下)
评论
0/150
提交评论