安徽省阜阳市2025届高三数学试题毕业第三次调研测试试卷_第1页
安徽省阜阳市2025届高三数学试题毕业第三次调研测试试卷_第2页
安徽省阜阳市2025届高三数学试题毕业第三次调研测试试卷_第3页
安徽省阜阳市2025届高三数学试题毕业第三次调研测试试卷_第4页
安徽省阜阳市2025届高三数学试题毕业第三次调研测试试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市2025届高三数学试题毕业第三次调研测试试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.2.设,,,则()A. B. C. D.3.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面,,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是()A. B.3 C. D.4.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=05.记等差数列的公差为,前项和为.若,,则()A. B. C. D.6.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.7.设为等差数列的前项和,若,则A. B.C. D.8.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.29.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.9910.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-311.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.312.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在区间内任意取一个数,则恰好为非负数的概率是________.14.数据的标准差为_____.15.设,满足约束条件,则的最大值为______.16.如图所示的流程图中,输出的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.18.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点.19.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.20.(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.21.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.22.(10分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是.称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题:(1)如果植物的上一代父系、母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少?(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,.求杂交所得子代的三种遗传性状,(或),所占的比例.(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为.设第代遗传因子和的频率分别为和,已知有以下公式.证明是等差数列.(4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.2、A【解析】

先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.3、D【解析】

建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得到,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值.设,则,化简得:,则,解得:,即点的轨迹上的点到的距离的最小值是.故选:.【点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.4、A【解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.5、C【解析】

由,和,可求得,从而求得和,再验证选项.【详解】因为,,所以解得,所以,所以,,,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.6、C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.7、C【解析】

根据等差数列的性质可得,即,所以,故选C.8、C【解析】

由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.9、B【解析】

由为定值,可得,则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.10、B【解析】

根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.11、D【解析】

转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.12、B【解析】

由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,,令,又,为周期为的偶函数,当时,,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【详解】当是非负数时,,区间长度是,又因为对应的区间长度是,所以“恰好为非负数”的概率是.故答案为:.【点睛】本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.14、【解析】

先计算平均数再求解方差与标准差即可.【详解】解:样本的平均数,这组数据的方差是标准差,故答案为:【点睛】本题主要考查了标准差的计算,属于基础题.15、29【解析】

由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.16、4【解析】

根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,,,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定理即可求得的长;(2)将的极坐标化为直角坐标,将直线方程与圆的方程联立,求得直线与圆的两个交点坐标,由中点坐标公式求得的坐标,再根据两点间距离公式即可求得.【详解】(1)直线的参数方程为(为参数),化为直角坐标方程为,即直线与曲线交于两点.则圆心坐标为,半径为1,则由点到直线距离公式可知,所以.(2)点的极坐标为,化为直角坐标可得,直线的方程与曲线的方程联立,化简可得,解得,所以两点坐标为,所以,由两点间距离公式可得.【点睛】本题考查了参数方程与普通方程转化,极坐标与直角坐标的转化,点到直线距离公式应用,两点间距离公式的应用,直线与圆交点坐标求法,属于基础题.18、(1),.(2)【解析】

(1)利用,代入可求;消参可得直角坐标方程.(2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.19、(1);(2)【解析】

(1)根据题意直接计算得到,,得到椭圆方程.(2)不妨设,且,设,代入数据化简得到,故,得到答案.【详解】(1),所以,,化简得,所以,,所以方程为;(2)由题意得,不在轴上,不妨设,且,设,所以由,得,所以,由,得,代入,化简得:,由于,所以,同理可得,所以,所以当时,最小为【点睛】本题考查了椭圆方程,椭圆中的向量运算和最值,意在考查学生的计算能力和综合应用能力.20、(1)见解析(2)见解析【解析】

(1)求导后分析导函数的正负再判断单调性即可.(2),有零点等价于方程实数根,再换元将原方程转化为,再求导分析的图像数形结合求解即可.【详解】(1)的定义域为,,当时,,所以在单调递减;当时,,所以在单调递增,所以的减区间为,增区间为.(2),有零点等价于方程实数根,令则原方程转化为,令,.令,,∴,,,,,当时,,当时,.如图可知①当时,有唯一零点,即有唯一零点;②当时,有两个零点,即有两个零点;③当时,有唯一零点,即有唯一零点;④时,此时无零点,即此时无零点.【点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.21、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论