2025年中考数学一轮复习难点专练:与圆有关的计算常考题型(5大热考题型)解析版_第1页
2025年中考数学一轮复习难点专练:与圆有关的计算常考题型(5大热考题型)解析版_第2页
2025年中考数学一轮复习难点专练:与圆有关的计算常考题型(5大热考题型)解析版_第3页
2025年中考数学一轮复习难点专练:与圆有关的计算常考题型(5大热考题型)解析版_第4页
2025年中考数学一轮复习难点专练:与圆有关的计算常考题型(5大热考题型)解析版_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

难点09与圆有关的计算常考题型

(5大热考题型)

麴型盘点N

题型一:正多边形和圆

题型二:与弧长有关的运算

题型三:与扇形面积有关的计算

题型四:不规则图形的面积计算

题型五:与圆锥有关的计算

.精淮提分

题型一:正多边形和圆

【中考母题学方法】

【典例1】(山东青岛•中考真题)如图,正六边形ABCDEF内接于。,点M在A8上,则NCME的度数

C.45°D.60°

【答案】D

【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.

【详解】解:连接OC、OD、OE,如图所示:

•••正六边形ABCDEF内接于O,

:.ZCOD=受=60°,贝IJNCOE=120°,

6

/.ZCME=^ZCOE=60°,

故选:D.

【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正〃多边形的中心角为当是解答的关键.

【典例2】(2023・上海・中考真题)如果一个正多边形的中心角是20。,那么这个正多边形的边数为.

【答案】18

【分析】根据正〃边形的中心角的度数为360。+〃进行计算即可得到答案.

【详解】根据正n边形的中心角的度数为360。+〃,

贝"=360+20=18,

故这个正多边形的边数为18,

故答案为:18.

【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.

【变式1-1](2024.内蒙古•中考真题)如图,正四边形ABCD和正五边形CEFGH内接于O,AD和砂相

交于点M,则ZAMF的度数为()

A.26°B.27°C.28°D.30°

【答案】B

【分析】本题考查了圆内接正多边形的性质,圆周角定理,三角形内角和定理,对顶角的性质,直角三角

形的性质,连接OC、OE、OD,设CO与所相交于点N,由圆的内接正多边形的性质可得NCOD=90。,

ZCOE=72°,即得/DOE=NCOD—NCOE=18。,即可由圆周角定理得/DCE=L/DOE=9。,进而由三

2

角形内角和定理得NDNM=NaVE=63。,再由直角三角形两锐角互余得到==27。,正确作

出辅助线是解题的关键.

【详解】解:连接OC、OE、OD,设CD与族相交于点N,

正四边形ABCD和正五边形CEFGH内接于1。,

ZCOD=360°+4=90°,ZCOE=360°+5=72°,

・・・ZDOE=ZCOD-ZCOE=90°-72°=18°,

ZDCE=-ZDOE=1x18°=9°,

22

(5-2)x180°

ZCEF=——1--------=108°,

5

・・・ACNE=180°-108°-9°=63°,

:・/DNM=/CNE=63°,

ZADC=90°,

・•・ZDMN=90°-63°=27°,

・•.ZAMF=ZDMN=27°,

故选:B.

【变式1-2](2024.内蒙古通辽.中考真题)如图,平面直角坐标系中,原点。为正六边形ABCDE尸的中心,

k

所〃x轴,点E在双曲线y=-(%为常数,左>0)上,将正六边形ABCDE厂向上平移6个单位长度,点。恰

X

好落在双曲线上,则上的值为()

A.473B.3A/3C.2A/3D.3

【答案】A

【分析】本题主要考查了求反比例函数解析式,正六边形的性质,等边三角形的性质与判定,勾股定理等

等,过点E作即,x轴于连接OE,可证明一是等边三角形,则OE=OD,OH=DH=^OH,

进而得到E8=¥OZ),设8=2m,则OH=m,HE=73m,则网加,屈),D(2m,0),即可得到点(2加,石)

在双曲线上,再由点E也在双曲线上,得到%=2%/=根.耳,据此求解即可.

【详解】解:如图所示,过点E作可,x轴于连接OE,

•••原点。为正六边形ABCDEF的中心,

360°

/.OE=OD,ZEOD=——=60°,

6

.•.一O即是等边三角形,

DE=OD,

,:EHLOD,

:.OH=DH=-OD,

2

/.EH=^DE--DH2=—OD,

2

设OD=2m,则O"=〃7,HE=0n,

/.,D(2/71,0),

,/将正六边形ABCDEF向上平移6个单位长度,点。恰好落在双曲线上,

.•.点(2%,有)在双曲线上,

又•.•点E也在双曲线上,

k=2m•6=m•y/3m,

解得根=2或机=0(舍去),

k=2m-^3=4^3,

故选:A.

【变式1-3](2024.山东东营.中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,

即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,

则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率兀的近似值为3.1416,

如图,。的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计,。的面积,可得兀的估计值为

述.若用圆内接正八边形近似估计。的面积,可得兀的估计值为.

【答案】20

【分析】本题考查了圆内接正多边形的性质,三角形的面积公式,勾股定理等,正确求出正八边形的面积

是解题的关键.过点A作求得/403=360。+8=45。,根据勾股定理可得41〃+0/=042,

即可求解.

【详解】

如图,A3是正八边形的一条边,点。是正八边形的中心,过点A作

在正八边形中,ZAO8=360°+8=45°

AM=OM

VOA=\,AM2+OM-=OA2,解得:AM=—

2

•-SOAB=^OBXAM=^-

正八边形为8x变=2&

4

**•2^2=]2X7T

71-2A/2

兀的估计值为20

故答案为:2忘.

【变式1-4](2024•山东潍坊・中考真题)【问题提出】

在绿化公园时,需要安装一定数量的自动喷洒装置,定时喷水养护,某公司准备在一块边长为18m的正方

形草坪(如图1)中安装自动喷洒装置,为了既节约安装成本,又尽可能提高喷洒覆盖率,需要设计合适的

安装方案.

k

说明:一个自动喷洒装置的喷洒范围是半径为r(m)的圆面.喷洒覆盖率q=:,s为待喷洒区域面积,k为

待喷洒区域中的实际喷洒面积.

图1

【数学建模】

这个问题可以转化为用圆面覆盖正方形面积的数学问题.

【探索发现】

(1)如图2,在该草坪中心位置设计安装1个喷洒半径为9m的自动喷洒装置,该方案的喷洒覆盖率0=

9

(2)如图3,在该草坪内设计安装4个喷洒半径均为的自动喷洒装置;如图4,设计安装9个喷洒半径

9

均为3m的自动喷洒装置;,以此类推,如图5,设计安装/个喷洒半径均为'm的自动喷洒装置.与

n

(1)中的方案相比,采用这种增加装置个数且减小喷洒半径的方案,能否提高喷洒覆盖率?请判断并给出

理由.

(3)如图6所示,该公司设计了用4个相同的自动喷洒装置喷洒的方案,且使得该草坪的喷洒覆盖率夕=1.已

知正方形ABCD各边上依次取点F,G,H,E,使得AE=BF=CG=DH,设AE=尤仙),,的面积为y(n?),

求y关于X的函数表达式,并求当y取得最小值时『的值.

图6

【问题解决】

(4)该公司现有喷洒半径为3®的自动喷洒装置若干个,至少安装几个这样的喷洒装置可使该草坪的喷

洒覆盖率2=1?(直接写出结果即可)

【答案】(1)£;(2)不能,理由见解析;(3)y=g(x_9)2+";当y取得最小值时/=述;(4)9

42V722

【分析】(1)根据定义,分别计算圆的面积与正方形的面积,即可求解;

(2)根据(1)的方法求得喷洒覆盖率即可求解;

(3)根据勾股定理求得无,,的关系,进而根据圆的面积公式得出函数关系式,根据二次函数的性质,即可

求解;

(4)根据(3)的结论可得当圆为正方形的外接圆时,面积最小,则求得半径为3&m的圆的内接正方形的

边长为6,进而将草坪分为9个正方形,即可求解.

【详解】(1)当喷洒半径为9m时,喷洒的圆面积s==%x92=8brm2.

正方形草坪的面积S=a2=182=324m2.

故喷洒覆盖率。='=券=£.

s3244

o

(2)对于任意的〃,喷洒面积人,="%(—)2=8brm2,而草坪面积始终为324nl?.

TT

因此,无论〃取何值,喷洒覆盖率始终为

这说明增加装置个数同时减小喷洒半径,对提高喷洒覆盖率不起作用.

(3)如图所示,连接所,

图6

要使喷洒覆盖率0=1,即要求人=1,其中S为草坪面积,

人为喷洒面积.

S

1。,6。2,。。3,。。4都经过正方形的中心点0,

在RtAEF中,EF=2r,AE=x,

"?AE=BF=CG=DH

:.AF=18-x,

在Rt.AE尸中,AE2+AF2=EF2

:.4r2=x2+(18-x)2

.2d+(18-J

••y=Ttr=-----------7i

4

・,•当%=9时,y取得最小值,此时4产=92+92

解得:厂=述

2

(4)由(3)可得,当।。|的面积最小时,此时圆为边长为9m的正方形的外接圆,

则当厂=3届时,圆的内接正方形的边长为受x2x3后=6m

2

10

而草坪的边长为18m,—=3,即将草坪分为9个正方形,将半径为30m的自动喷洒装置放置于9个正方

6

形的中心,此时所用装置个数最少,

•••至少安装9个这样的喷洒装置可使该草坪的喷洒覆盖率夕=1

【点睛】本题考查了正方形与圆综合问题,二次函数的应用;本题要求我们先理解和计算喷洒覆盖率,然

后通过调整喷洒装置的数量和喷洒半径来分析喷洒覆盖率的变化,最后在一个特定的条件下找出喷洒面积

和喷洒半径之间的函数关系.解决此类问题的关键在于将实际问题转化为数学问题,即如何将喷洒覆盖率

的计算问题转化为面积计算和函数求解问题.同时,在解决具体问题时,需要灵活运用已知的数学知识,

如圆的面积公式,正方形面积公式,以及函数解析式求解等.最后,还需要注意将数学计算结果还原为实

际问题的解决方案.

【中考模拟即学即练】

1.(2024•云南昭通•一模)如图,正八边形内接于(O,连接04,03,则NAO3的度数为()

【答案】C

【分析】本题考查正多边形的性质.根据题意,由正八边形内接于,::。知,4403=360。+8=45。.

【详解】解:,正八边形内接于

.-.Zy4C©=360°4-8=45°.

故选:C.

2.(2024•河北•模拟预测)如图,正六边形A3CDEF和正六边形G印血均以点。为中心,连接

AG,BH,CI,DJ,EK,FL(A,G,X三点共线),若C7=2,〃=3,则正六边形A3cDE/的边长为()

【答案】C

【分析】本题考查正多边形的性质,全等三角形的性质,30。直角三角形的性质,连接。4,OB,OG,OH,

根据正六边形的性质证明△AOG2△30”,得到NAGO=/氏/。=120。,BH=AG,即可得到2,I,H三

点共线,同理可得C,I,J三点共线,D,K,J三点共线,且。=川=2,然后在三角形C/D中计算即可.

【详解】连接。4,OB,OG,OH,过。作于

AF

•・•正六边形ABCDE/和正六边形均以点。为中心,

AOG=OH,OA^OB,ZLGH=ZGHI=XIJK=120°,ZAOB=ZGOH=Z60°,

ZAOG=ZBOH=Z60°-ZBOG,/。印=N"GO=N60。,

:.^AOG^ABOH,

AZAGO=ZBHO9BH=AG,

VA,G,"三点共线,

・・・ZAGO=180°-ZHGO=120°,

・•.ZAGO=ZBHO=120°f

:.NB//O+NO印=180。,

:.B,I,H三点共线,

同理可得C,I,J三点共线,D,K,/三点共线,且C/=D/=2,

・•.NG®=60。,

VC/1W,

AZJMD=ZCMD=90°,/JDM=30。,

JAf=g"=l,DM=^/jD2-JM2=V22-I2=A/3>

•:CI=2,IJ=3,

:.CM=CI+IJ-JM^4,

:.CD=^IDM2+CM-=,+(6j=M,

即正六边形ABCDEF的边长为M,

故选:c.

3.(2024・山西太原•模拟预测)如图,正五边形ABCDE内接于O,CP与[O相切于点C,则NBCP的度

数为()

C.144°D.162°

【答案】C

【分析】连接OC,OB,OD,首先根据正多边形的性质得到4co=(5—2-180。=]08。,然后证明出

OBC^OZ)C(SSS),得到NOC3=NOCO=;N5CD=54。,然后切线的性质得到NOC尸=90。,进而求解

即可.

【详解】如图所示,连接OC,OB,OD

•・•四边形ABCD£是正五边形

(5-2)x180°

J/BCD=——1--------=108°

5

VOB=OD,OC=OC,BC=DC

・・.,Q5C均ODC(SSS)

ZOCB=ZOCD=-/BCD=54°

2

・・・c尸与。相切于点C,

JOC.LCP

:.ZOCP=90°

:.ZBCP=ZBCO+ZOCP=540+90°=144°.

故选:c.

【点睛】此题考查了正多边形和圆,全等三角形的性质和判定,圆切线的性质等知识,解题的关键是正确

作出辅助线.

4.(2024・湖南益阳•模拟预测)如图,正五边形ABCDE的边长为5,以顶点A为圆心,A3的长为半径画圆,

则圆与正五边形重叠部分(图中阴影部分)的面积为()

B.7.5KC.8兀D.IOTT

【答案】B

【分析】本题考查正多边形和圆,扇形面积的计算.根据正五边形的内角和定理求出正五边形的一个内角

的度数,再根据扇形面积的计算方法进行计算即可.

【详解】解:.五边形ABCDE是正五边形,

.(5-2)x180°

..=-----------------------=1Uo,

5

2

。108^-x515匚

3百锵——TC-7,

扇形3602

故选:B.

5.(2024・福建泉州•模拟预测)如图,等边三角形ABC和正方形DEFG均内接于O,若EF=2,则BC的

长为()

C.V5D.y/6

【答案】D

【分析】本题考查了正多边形与圆,准确掌握正多边形及圆的相关性质并能准确计算是解题关键.连接OE、

OF、OB、OC,过点。作于点H,利用所求出圆的半径,再求出和,利用30。

直角三角形性质和勾股定理求出3",即可求出BC.

【详解】解:连接OE、OF,OB、OC,过点。作W13C于点以,如图,

A

•.•正方形。E/G内接于。,

NEO尸=360°;4=90°,

VOE=OF,EF=2,

•*-OE=OF=旧

/•OB=OC=也,

•.•等边三角形ABC内接于O,

...ZfiOC=360°-3=120°,

VOB=OC,OHJ.BC,

:.BH=CH,?BOH?COH60?,

OH=-OB=—,

22

BH=y/OB2-OH2=—,

2

/.BC=2BH=A/6,

故选:D.

6.(2024•广东•模拟预测)《墨子・天志》记载:“轮匠执其规、矩,以度天下之方圆."知圆度方,感悟数学

之美.如图,以正方形ABCD的对角线交点为位似中心,作它的位似图形AB'C'D',若四边形HB'C'D'的外

接圆半径为4,AB'-.AB=2:1,则正方形的周长为.

【答案】8立

【分析】此题考查了位似图形的性质,正多边形和圆的性质,勾股定理等知识,解题的关键是掌握以上知

识点.设位似中心为。,连接OA,OB',首先得到。4'=08'=4,然后利用勾股定理求出

A'B'=y/OA'+OB'=4^,然后根据位似图形的性质得到A3=20,进而求解即可.

【详解】解:如图所示,设位似中心为。,连接OA,OB'

正方形AB'CD'的外接圆半径为4,

:.OA=OB'=4,ZAOB=90°

:.A'B'=y/OA'+OB'=4&

AB':AB=2:1,

AB=20

4AB=8A/2.

正方形ABCD的周长为872.

故答案为:8e.

二与弧长有关的运算

题型二:与弧长有关的运算

【中考母题学方法】

【典例1】(2024.江苏镇江・中考真题)如图,四边形ABCD为平行四边形,以点A为圆心,A3长为半径

画弧,交BC边于点E,连接AE,AB=1,ZD=60°,贝UBE的长/=(结果保留兀).

【分析】本题考查弧长的计算,平行四边形的性质,等边三角形的判定和性质,关键是判定A4BE是等边三

角形,得到NS4E=6O。.

由平行四边形的性质推出N3=NO=60。,判定.母是等边三角形,得到/叱=60。,由弧长公式即可求

出嬴的长.

【详解】解:,四边形ABC。是平行四边形,

.\ZB=ZD=6Q0,

由题意得:AB=AE,

ABE是等边三角形,

.\ZBAE=60°,

AB=1,

,60%xl1

/=------=-71:.

1803

故答案为:■

【典例2】(2024.吉林长春.中考真题)一块含30。角的直角三角板ABC按如图所示的方式摆放,边A3与

直线/重合,AB=12cm.现将该三角板绕点B顺时针旋转,使点C的对应点C'落在直线/上,则点A经过

的路径长至少为cm.(结果保留")

【答案】87r

【分析】本题主要考查了旋转的性质、弧长公式等知识点,掌握弧长公式成为解题的关键.

由旋转的性质可得//WC=NA'3C=60。,即N/的=120°,再根据点A经过的路径长至少为以B为圆心,

以A3为半径的圆弧的长即可解答.

【详解】解::将该三角板绕点3顺时针旋转,使点C的对应点C'落在直线/上,

ZABC=ZABC=60°,即AABA=120°,

•万・

点A经过的路径长至少为12:0°。:12=8兀.

lol)

故答案为:87r.

【变式2-1](2024•江苏宿迁・中考真题)如图,已知正六边形ABCDEF的边长为2,以点E为圆心,EF长

为半径作圆,则该圆被正六边形截得的°b的长为

【分析】本题主要考查了正多形的内角和和内角以及弧长公式,根据六边形ABCDEF是正六边形,根据正

多边内角和等于(〃-2)x180。,求出内角NDE尸,再根据弧长公式即可得出答案.

【详解】解:・・•六边形ABCDE厂是正六边形,

(6-2)x180°

ZDEF=-----』------=120。

6

DF二七247r

180

故答案为:号-.

【变式2-2](2024.甘肃兰州.中考真题)“轮动发石车”是我国古代的一种投石工具,在春秋战国时期被广

泛应用,图1是陈列在展览馆的仿真模型,图2是模型驱动部分的示意图,其中i",eN的半径分别是

1cm和10cm,当顺时针转动3周时,eN上的点尸随之旋转废,贝!]〃=

图1

【答案】108

【分析】本题主要考查了求弧长.先求出点P移动的距离,再根据弧长公式计算,即可求解.

【详解】解:根据题意得:点P移动的距离为3义2万xl=6万cm,

.n°x7ixl0

><=6万,

180

解得:n=108.

故答案为:108

【变式2-3](2024•山东济宁・中考真题)如图,VABC三个顶点的坐标分别是A(1,3),3(3,4),C(1,4).

yfk

6—;—;—;—;—;—

]一_;一;7一八_;一:

O123456x

(1)将VABC向下平移2个单位长度得△ABC」画出平移后的图形,并直接写出点用的坐标;

⑵将△A4G绕点耳逆时针旋转90。得42c2.画出旋转后的图形,并求点G运动到点G所经过的路径长.

【答案】⑴作图见解析,即3,2)

⑵作图见解析,兀

【分析】本题考查了作图一平移变换和旋转变换,弧长公式,解题的关键熟练掌握平移和旋转的性质,

(1)利用平移的性质作出对应点,再连线即可,

(2)利用旋转的性质分别作出对应点,再连线,Q运动到点a所经过的路径长即为弧长即可可求解

【详解】(1)解:△AB。1如下图所示:

(2)解:&与C?如上图所示:

TTXB.C,X90°7ix2x90o

G运动到点G所经过的路径为:-----—-----=----------=71

180180

【变式2-4X2024.辽宁・中考真题)如图,。是VABC的外接圆,A3是G。的直径,点。在8c上,AC=BD,

E在班的延长线上,ZCEA=ZCAD.

cI)

(1)如图1,求证:CE是,:。的切线;

(2)如图2,若NCEA=2/DAB,OA=8,求BO的长.

【答案】(1)见详解

⑵2%

【分析】(1)连接CO,则4=N2,故N3=N1+N2=2N2,由AC=BO,得到N4=N2,而NACB=90。,

贝lJ/C4D+2/2=90°,由NCE4=NG4D,得NCE4+2N2=90°,因此NCE4+N3=90°,故NECO=90。,

则CE是。的切线;

90°

(2)连接CO,。。,可得N3=2N2=2N4=NCE4,则/3=/6£4=亏=45。,故N4=22.5。,由BD=BD,

得“03=2/4=45。,那么2。长为=2万.

loU

OC=OB,

:.N1=N2,

・・・N3=ZL+N2=2N2,

,**AC=BD^

:.N4=N2,

・・・A5为直径,

ZACB=90°,

・・・NC4T>+N4+N2=90。,即NCW+2N2=90。,

NCEA=NCAD,

:.ZCEA+2Z2=90°,

・・・NCE4+N3=90。,

NECO=90。,

C.OCLCE,

・・・CE是。的切线;

(2)解:连接CO,DO,

由⑴得N3=2N2=2N4,

ZCEA=2ZDAB,

:.NCE4=N3,

NECO=90。,

90°

・•・Z3=ZC£A=——二45。,

2

・・.N4=22.5。,

BD=BD,

:.ZDO5=2/4=45。,

・••BD长为:竺卫竺=2万.

DU180

【点睛】本题考查了圆周角定理,切线的判定,直角三角形的性质,三角形的外角性质,弧长公式等,正

确添加辅助线是解决本题的关键.

【中考模拟即学即练】

1.(2024•浙江温州•一模)点A、B、。在(。上的位置如图所示,ZA=70°,。的半径为3,则8c的长

C.-7TD.7九

2

【答案】B

【分析】本题主要考查了弧长计算公式,圆周角定理,解题的关键是熟练掌握弧长公式,先根据圆周角定

理求出NBOC=2x70°=140°,然后根据弧长计算公式进行计算即可.

【详解】解:;NA=70。,

NBOC=2ZA=2x70°=140°,

.V1以.4,140x3卒7

•.BC1的长为:।二=,,

故选:B.

2.(2024・湖南•模拟预测)如图,用一个半径为6cm的滑轮将物体G向上拉升,若物体G的上升速度为^cm/s,

上升的时间为4s,假设绳索(粗细不计)与滑轮之间没有滑动,则图中线段OP在这段时间内扫过的面积(单

位:cm2)是()

A.2兀B.3兀C.471D.6加

【答案】C

JTO

【分析】本题考查了弧长公式以及扇形面积公式,先得出物体G的上升距离是:x4=qMcm),再设点尸

〃2

旋转路径所对的圆心角为",列式一;x2万x6=2x二万,解出"=40。,最后运用扇形面积公式列式计算,

3603

即可作答.

【详解】解:・・•物体G的上升速度为mTTcm/s,上升的时间为4s,

6

7TQ

物体G的上升距离是=x4=:Mcm),

63

则在这个时间内,设点P旋转路径所对的圆心角为〃,

n_,_2

・・x2万x6=2x一兀,

3603

解得冏=40。,

二线段。尸在这段时间内扫过的面积=粤;x7x6=4》(cm?),

故选:C.

3.(2024•陕西商洛•模拟预测)传统服饰日益受到关注,如图①为明清时期女子主要裙式之一的马面裙,如

图②马面裙可以近似地看作扇形的一部分,其中AZ)的长度为(米,裙长钿=Q8米,圆心角

NAOD=Z8OC=60。,则08的长为()

图①

A.1米

【答案】B

【分析】本题考查了弧长公式.由题意知,心=吗”=:乃,求得。4=1,得到03=1.8米即可.

从“1803

・、4h-n-A77I口H»八I,60兀,OA1

[详斛]解:由超思知,I=———;—=不兀、

AD1803

解得OA=1,

•・•裙长A5为0.8米,

・•・05=1.8米,

故选:B.

4.(2024.四川眉山.二模)7个半径均为一的硬币两两外切,如图所示,若将左边第一个硬币沿着剩下硬币

的圆周滚动一圈回到原来的位置(其余6个硬币固定不动),那么这个硬币在滚动时圆心移动的路径长为()

33

【答案】C

【分析】本题主要考查了弧长的计算的应用等知识点,根据题意确定运动路径是由由4个孤1与8个孤2

组成,然后利用弧长公式计算即可得解,熟练掌握弧长的计算是解决此题的关键.

该硬币圆心路径由4个孤1与8个孤2组成,

・•・由圆半径相等得,AB=AC=BC=2r,

・・・VABC为等边三角形,

・•・ZABC=ABAC=ZCAB=60°,

AZZMC=120°,NCBE=60。,

..,i/1204,,,,602

••3弧nT1的长二——7vx2r=—7rr,弧3nT2的长=——7i^lr=-7ir,

18031803

4232

总路径长=一»rx4+—%rx8=—冗T,

333

故选:C.

5.(2023•内蒙古呼伦贝尔•一模)已知一弧长为10刀切,此弧所对圆心角为120。,则此弧所在圆的半径为.

cm

【答案】15

【分析】根据弧长公式进行求解即可.此题考查了弧长公式,/=r篝ijrr,其中"是圆心角度数,,为半径,

lot)

熟练掌握弧长公式是解题的关键.

【详解】解:设扇形所在圆的半径为Mm,

EI120"[八

则不限=1。万,

解得7=15,

故答案为:15.

6.(2024•浙江温州•三模)在半径为18cm的圆上有一段弧,弧长是12%cm,则该弧所对的圆周角的度数

为.

【答案】60。/60度

【分析】考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.

根据弧长的计算公式:/=y黑iTrr(弧长为/,圆心角度数为",圆的半径为r),代入即可求出圆心角的度数.

lot)

【详解】根据弧长的公式/=黑

lol)

„〃;rxl8

得z到Kll:12万=------

180

解得“=120。,

故圆周角为60°

故答案为:60°.

7.(2024•山东济南•一模)如图1,我国是世界上最早制造使用水车的国家.如图2是水车舀水灌溉示意图,

水车轮的辐条(圆的半径)长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水

斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A处离开水面,逆时针旋转150。

上升至轮子上方8处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A处(舀

水)转动到5处(倒水)所经过的路程是米.(结果保留万)

【答案】5万

【分析】本题考查了弧长的计算,根据弧长公式进行计算,即可解答,熟练掌握弧长公式是解题的关键.

【详解】解:由题意得:150;:x6=5.(米),

水斗从A处(舀水)转动到8处《到水)所经过的路程是5万米,

故答案为:5万.

8.(2023・四川绵阳•模拟预测)如图,正三角形的高是3厘米,正方形的边长是正三角形的2倍,木块从图

①的位置开始,沿着木桩的边缘滚动,滚动过程如图②,图③所示,木块滚动一周后回到原位置,那么正

三角形正中心的点A经过的路径长度为(1=3).

【分析】本题考查了弧长的计算、旋转的性质.找出点A轨迹是解题的关键.利用弧长公式,可以解决问

题.

【详解】解:如图,

•:A和4都是正三角形的中心,

Z^oc=N&OD=1X60。=30°,

2

.•.NAO4=120。,四个角上的弧所对圆心角为2404=210。,04=04=1*3=2,

第1次滚动,点A运动轨迹是以圆心。、圆心角150。,AO为半径的弧44,

第2次滚动,是以圆心。、圆心角为210。,0a半径的弧4A接下来运动类似,

如图中虚线,

____.,,,,,....(120^-x2210万•2)44

A点运动的路z径长度=4|+=—^«44.

IioUloU)J

故答案为:44.

9.(22-23九年级上•浙江绍兴・期末)如图,在。中,C。是直径,弦ABLCD,垂足为点E,连接AC,

AD.

D

⑴求证:ZC=ZBAD.

⑵若NC=30。,OC=3,求A8的长度.

【答案】(1)见解析

(2)2%,见解析

【分析】本题考查垂径定理,圆周角定理及推论,弧长计算;连接辅助线,从而运用圆周角定理及推论得

到角之间的关系是解题的关键.

(1)连接CB,由垂径定理,得AD=BD,由圆周角定理推论知/3CD=NACD,NBCD=NBAD,所以

ZACD=ZBAD.

(2)如图,连接Q4,OB,由圆周角定理可推出NAO8=2NACB=120。,根据弧长公式计算求解.

【详解】(1)证明:连接CB,

D

是直径,弦ABLCD,

,"AD=BD-

:.ZBCD=ZACD.

又「ZBCD=ZBAD.

:.ZACD=ZBAD;

(2)解:如图,连接。4,0B,则NAO5=2NACB,

­AD=BD^

:.ZACD=/BCD,

:.ZACB=2ZACD=60°,

ZAOB=120°

1202

AB的长度=即"=/3乃2万.

loUJ

题型三:与扇形面积有关的计算

【中考母题学方法】

【典例1】(2024•广东深圳•中考真题)如图,在矩形ABC。中,BC=y/2AB,。为BC中点,OE=AB=4,

则扇形EOP的面积为

【分析】本题考查了扇形的面积公式,解直角三角形.利用解直角三角形求得=45。,ZCOF=45°,

得到NE8=90。,再利用扇形的面积公式即可求解.

【详解】解::=,AB=4,

BC=46,

为2C中点,

OB=OC=LBC=2近,

2

•/OE=4,

在RJO3E中,cosZBOE=—=—=—,

OE42

NBOE=45°,

同理/CO9=45°,

ZEOF=180°-45°-45°=90°,

on^-.42

・・・扇形EOF的面积为=41,

360

故答案为:4

【典例2](2024.山东青岛・中考真题)如图,ABC,。是O上的点,半径OA=3,AB=C0,ND3C=25。,

连接49,则扇形495的面积为()

55

C.一兀D.

212

【答案】A

【分析】本题考查了圆周角定义,扇形的面积,连接OC、OD,由圆周角定理可得NCOD=2/Z)3c=50。,

进而得NAOB=/COD=50。,再根据扇形的面积计算公式计算即可求解,掌握圆周角定理及扇形的面积计

算公式是解题的关键.

【详解】解:连接OC、OD,则/COD=2/DBC=50。,

•AB=CD

:.ZAOB=ZCOD=50°,

_50XKx32_5

扇形Aos3604",

【变式3-1](2024•山东东营.中考真题)习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东

营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,04=20cm,

OB=5cm,纸扇完全打开后,外侧两竹条(竹条宽度忽略不计)的夹角/AOC=120。.现需在扇面一侧绘

)cm2.

A.—71B.757rC.125TID.15071

3

【答案】C

【分析】将山水画所在纸面的面积转化为大小两个扇形的面积之差即可解决问题.本题主要考查了扇形面

积的计算,熟知扇形面积的计算公式是解题的关键.

【详解】解:由题知,

120-7T-202400

S扇形OAC==71\cm

360-----3

120•万S25

S扇形050=---------=——%cm2

3603'

所以山水画所在纸面的面积为:—^-y^=125^(cm2).

故选:C.

【变式3-2](2024.河南.中考真题)如图,。是边长为4若的等边三角形A8C的外接圆,点。是BC的

中点,连接CD.以点。为圆心,8。的长为半径在I。内画弧,则阴影部分的面积为()

A

D

A.—B.47tC.史凡D.167r

33

【答案】C

【分析】过。作DE,3c于E,利用圆内接四边形的性质,等边三角形的性质求出NBDC=120。,利用弧、

弦的关系证明团》=8,利用三线合一性质求出85=32。=26,N8DE=:NBOC=60。,在中,

利用正弦定义求出BD,最后利用扇形面积公式求解即可.

【详解】解:过。作DEL3c于E,

A

D

•;)。是边长为4班的等边三角形ABC的外接圆,

/.BC=4A/3-4=60°,ZSDC+ZA=180°,

ZB£)C=120°,

:点。是BC的中点,

:•BD=CD,

:.BD=CD,

BE=-BC=2y/3,NBDE=L/BDC=60。,

22

BE

BD=

sinZBDE黑=4

.120/42167r

♦•3阴影==<

故选:C.

【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直

角三角形等知识,灵活应用以上知识是解题的关键.

【变式3-3](2024.河北・中考真题)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如

图,某折扇张开的角度为120。时,扇面面积为S、该折扇张开的角度为〃。时,扇面面积为S“,若m=T,

3

则与〃关系的图象大致是()

->

n

【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为R,根据扇形的面积公式表示

出兀R2=3S,进一步得出5〃=处=3*,再代入加=今即可得出结论.掌握扇形的面积公式是解题的关

360120S

键.

【详解】解:设该扇面所在圆的半径为R,

120nR2nR2

S

360~~3~

,nR2=3S,

,••该折扇张开的角度为“。时,扇面面积为s“,

n

・・3“=-=------x

360360

nS

二二九1

120=----n

S120120

正是〃的正比例函数,

Vn>0,

它的图像是过原点的一条射线.

故选:C.

【中考模拟即学即练】

1.(2024•云南•模拟预测)已知扇形的弧长为4万cm,面积为24;rcm2,则此扇形的圆心角为度.

【答案】60

【分析】本题考查求扇形的圆心角,根据扇形的面积公式进行求解即可.

【详解】解:设扇形的半径为「,圆心角的度数为

由题意,得:~x=24TT,

.1=12,

zz=60;

故答案为:60.

2.(2024•北京•三模)已知一个扇形的面积是12兀,弧长是2兀,则这个扇形的半径为.

【答案】12

【分析】本题考查扇形面积公式S=根据扇形面积公式直接代入求解即可得到答案.

【详解】解:;一个扇形的面积是12兀,弧长是21,

12^-=—x2^r,

2

解得:r=12,

故答案为:12.

3.(2024•黑龙江大庆•中考真题)如图所示的曲边三角形也称作“莱洛三角形”,它可以按下述方法作出:作

等边三角形ABC;分别以点A,B,C为圆心,以4B的长为半径作BC,AC,AB.三段弧所围成的图形

就是一个曲边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论