四川省成都航天中学2025届高三下学期阶段性测试(四)数学试题_第1页
四川省成都航天中学2025届高三下学期阶段性测试(四)数学试题_第2页
四川省成都航天中学2025届高三下学期阶段性测试(四)数学试题_第3页
四川省成都航天中学2025届高三下学期阶段性测试(四)数学试题_第4页
四川省成都航天中学2025届高三下学期阶段性测试(四)数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都航天中学2025届高三下学期阶段性测试(四)数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则,,的大小关系为()A. B. C. D.2.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.13.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位4.函数的大致图像为()A. B.C. D.5.若复数满足,则()A. B. C. D.6.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.7.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.8.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.9.已知向量与向量平行,,且,则()A. B.C. D.10.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100 B.1000 C.90 D.9011.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()A.4 B.3 C.2 D.112.函数的图象大致为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.14.如图,在直四棱柱中,底面是平行四边形,点是棱的中点,点是棱靠近的三等分点,且三棱锥的体积为2,则四棱柱的体积为______.15.已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是___16.设复数满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点.18.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.20.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.21.(12分)如图,在正四棱锥中,,,为上的四等分点,即.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.22.(10分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.(Ⅰ)求证:;(Ⅱ)求证:四边形是平行四边形;(Ⅲ)若,试判断二面角的大小能否为?说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.2.B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.3.A【解析】

运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.4.D【解析】

通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.5.B【解析】

由题意得,,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.6.C【解析】

由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.7.A【解析】

由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.8.B【解析】

由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.9.B【解析】

设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.10.A【解析】

利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为.故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.11.C【解析】

①根据线性相关性与r的关系进行判断,

②根据相关指数的值的性质进行判断,

③根据方差关系进行判断,

④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.【详解】①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;

②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;

③若统计数据的方差为1,则的方差为,故③正确;

④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点必满足线性回归方程;因此“满足线性回归方程”是“,”必要不充分条件.故④错误;

所以正确的命题有①③.

故选:C.【点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.12.D【解析】

由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.二、填空题:本题共4小题,每小题5分,共20分。13.60【解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有种方法.详解:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果.14.12【解析】

由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,分别表示出直四棱柱的体积和三棱锥的体积,即可求解。【详解】由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,则直四棱柱的体积为,又由三棱锥的体积为,解得,即直四棱柱的体积为。【点睛】本题主要考查了棱柱与棱锥的体积的计算问题,其中解答中正确认识几何体的结构特征,合理、恰当地表示直四棱柱三棱锥的体积是解答本题的关键,着重考查了推理与运算能力,以及空间想象能力,属于中档试题。15.【解析】

利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有,即而当时满足题意,解得或所以答案为【点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简16..【解析】

利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【详解】∵复数满足,∴,∴,故而可得,故答案为.【点睛】本题考查了复数的运算法则,共轭复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),.(2)【解析】

(1)利用,代入可求;消参可得直角坐标方程.(2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.18.(1)的极坐标方程为.曲线的直角坐标方程为.(2)【解析】

(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,则,其中为锐角,且满足,,当时,取最大值,此时,【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.19.(1),;(2).【解析】

(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所以.【点睛】本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.20.(1);(2)【解析】

(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,..【点睛】本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积.需要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路.21.(1)答案见解析.(2)【解析】

(1)根据题意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以为原点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论