




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省邳州市炮车中学2025届高三下学期阶段性测评(期中)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4.给出下列命题:①;②;③;④,其中真命题的个数为()A.1 B.2 C.3 D.42.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或3.已知是函数的极大值点,则的取值范围是A. B.C. D.4.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-15.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4 B.8 C.9 D.276.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.7.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.29.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A. B.C. D.10.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则11.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.12.下列函数中,在区间上为减函数的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率为_________.14.命题“”的否定是______.15.在中,,.若,则_________.16.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.18.(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.19.(12分)设函数.(1)当时,求不等式的解集;(2)当时,求实数的取值范围.20.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.(1)求证:;(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.21.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.22.(10分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.2、D【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.3、B【解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴,即在上单调递增,时,,,且,∴,即在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,所以,这与是函数的极大值点矛盾.综上,.故选B.方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.4、B【解析】
由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.5、D【解析】
设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,,,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,,在中,由勾股定理得:,,解得,,故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.6、D【解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.7、B【解析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.8、D【解析】
分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.9、C【解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.10、C【解析】
根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11、C【解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.12、C【解析】
利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】14、,【解析】
根据特称命题的否定为全称命题得到结果即可.【详解】解:因为特称命题的否定是全称命题,所以,命题,则该命题的否定是:,故答案为:,.【点睛】本题考查全称命题与特称命题的否定关系,属于基础题.15、【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.16、【解析】
求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长.【详解】抛物线E:的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长.【点睛】本题考查了抛物线的准线、圆的弦长公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1):,:;(2)【解析】
(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又点到直线的距离的最大值为,所以面积的最大值为.【点睛】本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.18、(1);(2).【解析】
(1)根据离心率以及,即可列方程求得,则问题得解;(2)设直线方程为,联立椭圆方程,结合韦达定理,根据题意中转化出的,即可求得参数,则三角形面积得解.【详解】(1)设,由题意可得.因为是的中位线,且,所以,即,因为进而得,所以椭圆方程为(2)由已知得两边平方整理可得.当直线斜率为时,显然不成立.直线斜率不为时,设直线的方程为,联立消去,得,所以,由得将代入整理得,展开得,整理得,所以.即为所求.【点睛】本题考查由离心率求椭圆的方程,以及椭圆三角形面积的求解,属综合中档题.19、(1)(2)当时,的取值范围为;当时,的取值范围为.【解析】
(1)当时,分类讨论把不等式化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解.【详解】(1)当时,,不等式可化为或或,解得不等式的解集为.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,所以当时,的取值范围为;当时,的取值范围为.【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)证明见解析;(2)【解析】
(1)根据余弦定理,可得,利用//,可得//平面,然后利用线面平行的性质定理,//,最后可得结果.(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.【详解】(1)不妨设,则,在中,,则,因为,所以,因为//,且A、B、M、N四点共面,所以//平面.又平面平面,所以//.而,.(2)因为平面平面,且,所以平面,,因为,所以平面,,因为,平面与平面夹角为,所以,在中,易知N为的中点,如图,建立空间直角坐标系,则,,,,,,,,设平面的一个法向量为,则由,令,得.设与平面所成角为,则.【点睛】本题考查线面平行的性质定理以及线面角,熟练掌握利用建系的方法解决几何问题,将几何问题代数化,化繁为简,属中档题.21、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案.【详解】解:(Ⅰ)取的中点为,连结.由是三棱台得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 原创漫画出版行业深度调研及发展项目商业计划书
- 专业骑行服企业制定与实施新质生产力项目商业计划书
- 麻辣香锅食材店企业制定与实施新质生产力项目商业计划书
- 2025年互联网金融服务平台金融科技监管政策影响研究报告
- Unit 3 The world of science Writing and Presenting ideas 课件(内嵌视频)高一英语外研版必修3
- 毕业设计(论文)-家用轿车(长安悦翔)真空助力器的改进设计
- 2025年互联网广告精准投放算法效果评估与广告投放效果预测模型研究
- 2025年互联网保险在车险产品创新与风险控制中的实践报告
- 湖泊碳汇功能动态监测-洞察及研究
- 医学研究与实践杂志
- 土地托管合同协议书范本
- 2024年云南省宜良县事业单位公开招聘医疗卫生岗考前冲刺模拟带答案
- 八年级英语下学期期末考试(广州专用)(原卷版)
- 实习生转正综合素质与协议
- 军事历史兵器展览营行业深度调研及发展项目商业计划书
- 2025年健康监测考试试题及答案详解
- 2025年中国汽车塑料成型产品数据监测报告
- 2025年(第一季度)电网工程设备材料信息参考价(加密)
- 生产经营单位事故隐患内部报告奖励制度
- 分布式光伏发电、储能电站安全检查表(参考)
- 酒店行业销售部月度汇报
评论
0/150
提交评论