湖南省衡阳市雁峰区第八中学2025届招生全国统一考试模拟试卷分科综合卷数学试题(三)_第1页
湖南省衡阳市雁峰区第八中学2025届招生全国统一考试模拟试卷分科综合卷数学试题(三)_第2页
湖南省衡阳市雁峰区第八中学2025届招生全国统一考试模拟试卷分科综合卷数学试题(三)_第3页
湖南省衡阳市雁峰区第八中学2025届招生全国统一考试模拟试卷分科综合卷数学试题(三)_第4页
湖南省衡阳市雁峰区第八中学2025届招生全国统一考试模拟试卷分科综合卷数学试题(三)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市雁峰区第八中学2025届招生全国统一考试模拟试卷分科综合卷数学试题(三)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集,集合,,则()A. B. C. D.2.在三棱锥中,,且分别是棱,的中点,下面四个结论:①;②平面;③三棱锥的体积的最大值为;④与一定不垂直.其中所有正确命题的序号是()A.①②③ B.②③④ C.①④ D.①②④3.设集合(为实数集),,,则()A. B. C. D.4.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知,则下列不等式正确的是()A. B.C. D.6.已知是第二象限的角,,则()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.8.不等式组表示的平面区域为,则()A., B.,C., D.,9.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月11.设i为数单位,为z的共轭复数,若,则()A. B. C. D.12.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,角,,的对边分别为,,.若;且,则周长的范围为__________.14.已知集合,若,则__________.15.已知数列的前项和且,设,则的值等于_______________.16.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x-y的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.18.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.19.(12分)已知椭圆的左焦点为F,上顶点为A,直线AF与直线垂直,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线交于点Q,且,求点P的坐标.20.(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.21.(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.22.(10分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.2、D【解析】

①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.3、A【解析】

根据集合交集与补集运算,即可求得.【详解】集合,,所以所以故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.4、A【解析】

试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系5、D【解析】

利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.6、D【解析】

利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.7、D【解析】

先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.8、D【解析】

根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,

设,则,的几何意义为直线在轴上的截距的2倍,

由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;

设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.9、B【解析】

根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.10、C【解析】

根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.11、A【解析】

由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.12、A【解析】

根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.【详解】解:所以三角形周长故答案为:【点睛】考查正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.14、1【解析】

分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.【详解】依题意,分别令,,,由集合的互异性,解得,则.故答案为:【点睛】本题考查集合元素的特性:确定性、互异性、无序性.确定集合中元素,要注意检验集合中的元素是否满足互异性.15、7【解析】

根据题意,当时,,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,,又,解得,当时,由,所以,,即,故数列是以为首项,为公比的等比数列,故,又,,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.16、【解析】

根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【详解】根据茎叶图中的数据,得:甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故答案为:.【点睛】本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)零点分段法,分,,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【详解】解:(1)若时,,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又由题意知:,即,故的范围为.【点睛】本题考查解绝对值不等式以及不等式能成立求参数,考查学生的运算能力,是一道容易题.18、(1)(2)【解析】

(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19、(I).(II)【解析】

(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出直线的方程,从而求得点的坐标,代入,化简可求得点的坐标.【详解】(I)∵椭圆的左焦点,上顶点,直线AF与直线垂直∴直线AF的斜率,即①又点A是线段BF的中点∴点的坐标为又点在直线上∴②∴由①②得:∴∴椭圆的方程为.(II)设由(I)易得顶点M、N的坐标为∴直线MP的方程是:由得:又点P在椭圆上,故∴∴∴或(舍)∴∴点P的坐标为【点睛】本小题主要考查直线和圆锥曲线的位置关系,考查两直线垂直的条件,考查向量数量积的运算.属于中档题.在解题过程中,首先阅读清楚题意,题目所叙述的坐标、所叙述的直线是怎么得到的,向量的数量积对应的坐标都有哪一些,应该怎么得到,这些在读题的时候需要分析清楚.20、(1)(2)最大值.【解析】

(1)根据通径和即可求(2)设直线方程为,联立椭圆,利用,用含的式子表示出,用换元,可得,最后用均值不等式求解.【详解】解:(1)依题意有,,,所以椭圆的方程为.(2)设直线的方程为,联立,得.所以,.所以.令,则,所以,因,则,所以,当且仅当,即时取得等号,即四边形面积的最大值.【点睛】考查椭圆方程的求法和椭圆中四边形面积最大值的求法,是难题.21、(1)①当时,在单调递增,②当时,单调递增区间为,,单调递减区间为(2)证明见解析【解析】

(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),①当时,恒成立,则在单调递增②当时,令得,解得,又,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论