2025年大学统计学期末考试题库:统计推断与检验统计学在计算机视觉领域的应用试题_第1页
2025年大学统计学期末考试题库:统计推断与检验统计学在计算机视觉领域的应用试题_第2页
2025年大学统计学期末考试题库:统计推断与检验统计学在计算机视觉领域的应用试题_第3页
2025年大学统计学期末考试题库:统计推断与检验统计学在计算机视觉领域的应用试题_第4页
2025年大学统计学期末考试题库:统计推断与检验统计学在计算机视觉领域的应用试题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年大学统计学期末考试题库:统计推断与检验统计学在计算机视觉领域的应用试题考试时间:______分钟总分:______分姓名:______一、单选题(每题2分,共20分)1.在假设检验中,零假设H0通常表示:A.变量之间存在显著差异B.变量之间不存在显著差异C.样本均值等于总体均值D.样本均值不等于总体均值2.以下哪项不是统计推断的基本步骤?A.提出假设B.收集数据C.分析数据D.建立模型3.在进行t检验时,如果样本量较小且总体标准差未知,应该使用:A.单样本t检验B.双样本t检验C.方差分析D.Z检验4.以下哪项不是假设检验中的“p值”?A.拒绝零假设的概率B.接受零假设的概率C.在零假设为真的情况下,观察到的样本结果或更极端结果的概率D.在零假设为真的情况下,观察到的样本结果或更极端结果的期望值5.在卡方检验中,用于检验两个分类变量之间独立性的统计量是:A.t统计量B.Z统计量C.卡方统计量D.F统计量6.以下哪项不是线性回归分析中的假设?A.残差是随机变量B.残差之间相互独立C.残差服从正态分布D.残差与自变量之间存在线性关系7.在进行方差分析时,F统计量用于比较:A.不同组之间的均值差异B.总体均值与样本均值差异C.总体方差与样本方差差异D.不同组之间的方差差异8.以下哪项不是协方差分析中的假设?A.残差是随机变量B.残差之间相互独立C.残差服从正态分布D.残差与自变量之间存在非线性关系9.在进行回归分析时,以下哪项不是回归系数的假设?A.残差是随机变量B.残差之间相互独立C.残差服从正态分布D.残差与自变量之间存在线性关系10.在进行聚类分析时,以下哪项不是距离度量方法?A.欧氏距离B.曼哈顿距离C.距离度量D.相关系数二、判断题(每题2分,共20分)1.在假设检验中,如果p值小于显著性水平α,则拒绝零假设。()2.在t检验中,如果样本量较大,可以使用正态分布进行近似。()3.在卡方检验中,如果期望频数小于5,则无法进行检验。()4.在线性回归分析中,残差是随机变量,因此可以忽略它们的影响。()5.在方差分析中,F统计量用于比较不同组之间的均值差异。()6.在协方差分析中,残差与自变量之间存在线性关系。()7.在回归分析中,如果回归系数为负,则表示自变量与因变量呈正相关关系。()8.在聚类分析中,距离度量方法可以用于衡量样本之间的相似程度。()9.在主成分分析中,可以将原始数据降维,提高分析效率。()10.在因子分析中,因子得分可以用于解释原始数据的内在结构。()四、计算题(每题10分,共30分)1.已知某公司生产一批产品,抽取50件产品进行质量检测,检测结果如下:质量合格的产品有38件,不合格的产品有12件。假设质量合格为成功事件,试计算:(1)单次抽取产品合格的概率;(2)单次抽取产品不合格的概率;(3)连续抽取3次产品全部合格的概率。2.某班级有40名学生,其中有20名男生,20名女生。随机抽取3名学生参加比赛,求:(1)抽取到的3名学生都是女生的概率;(2)抽取到的3名学生中有2名男生和1名女生的概率;(3)抽取到的3名学生中至少有1名男生的概率。3.某工厂生产的一批产品中,有5%的产品存在缺陷。从这批产品中随机抽取10件进行检测,求:(1)恰好有1件产品存在缺陷的概率;(2)至少有2件产品存在缺陷的概率;(3)至多有2件产品存在缺陷的概率。五、应用题(每题10分,共30分)1.某调查公司对100名消费者进行了问卷调查,了解他们对某品牌的手机满意度。调查结果显示,其中80%的消费者表示满意,20%的消费者表示不满意。假设随机抽取一名消费者,求:(1)该消费者表示满意的概率;(2)该消费者表示不满意的概率;(3)随机抽取10名消费者,其中有6名表示满意的概率。2.某公司进行了一项市场调研,调查了100名顾客对一款新产品的评价。调查结果显示,其中有60%的顾客表示非常喜欢,30%的顾客表示喜欢,10%的顾客表示不喜欢。假设随机抽取一名顾客,求:(1)该顾客表示非常喜欢新产品的概率;(2)该顾客表示喜欢新产品的概率;(3)随机抽取10名顾客,其中有8名表示非常喜欢新产品的概率。3.某市进行了一项关于市民对城市交通状况的满意度调查,调查结果显示,其中70%的市民表示满意,30%的市民表示不满意。假设随机抽取一名市民,求:(1)该市民表示满意的概率;(2)该市民表示不满意的概率;(3)随机抽取10名市民,其中有7名表示满意的概率。六、论述题(每题20分,共60分)1.请简述假设检验的基本步骤,并说明在进行假设检验时需要注意哪些问题。2.请简述方差分析的应用场景,并举例说明其在实际工作中的具体应用。3.请简述线性回归分析的基本原理,并说明其在实际工作中的具体应用。本次试卷答案如下:一、单选题答案及解析:1.B。在假设检验中,零假设H0通常表示变量之间不存在显著差异。2.B。统计推断的基本步骤包括提出假设、收集数据、分析数据和建立模型,收集数据是第二步。3.A。在样本量较小且总体标准差未知的情况下,应使用单样本t检验。4.C。p值是在零假设为真的情况下,观察到的样本结果或更极端结果的概率。5.C。卡方检验用于检验两个分类变量之间是否独立,使用卡方统计量。6.A。线性回归分析中的假设之一是残差是随机变量。7.A。方差分析用于比较不同组之间的均值差异。8.D。协方差分析中的假设不包括残差与自变量之间存在非线性关系。9.D。回归分析中的假设之一是残差与自变量之间存在线性关系。10.D。相关系数用于衡量两个变量之间的线性关系,不属于距离度量方法。二、判断题答案及解析:1.√。在假设检验中,如果p值小于显著性水平α,则拒绝零假设。2.√。在样本量较大时,可以使用正态分布对t检验进行近似。3.×。卡方检验中,期望频数小于5时,可以采用连续性校正方法。4.×。在回归分析中,残差是随机变量,但它们对模型分析有重要影响。5.√。方差分析用于比较不同组之间的均值差异。6.×。协方差分析中的假设不包括残差与自变量之间存在非线性关系。7.×。回归系数为负表示自变量与因变量呈负相关关系。8.√。距离度量方法可以用于衡量样本之间的相似程度。9.√。主成分分析可以将原始数据降维,提高分析效率。10.√。因子分析中的因子得分可以用于解释原始数据的内在结构。四、计算题答案及解析:1.解析:(1)单次抽取产品合格的概率为:38/50=0.76。(2)单次抽取产品不合格的概率为:12/50=0.24。(3)连续抽取3次产品全部合格的概率为:(0.76)^3≈0.438。2.解析:(1)抽取到的3名学生都是女生的概率为:(20/40)*(19/39)*(18/38)≈0.023。(2)抽取到的3名学生中有2名男生和1名女生的概率为:C(20,2)*C(20,1)/C(40,3)≈0.438。(3)抽取到的3名学生中至少有1名男生的概率为:1-C(20,3)/C(40,3)≈0.952。3.解析:(1)恰好有1件产品存在缺陷的概率为:C(10,1)*(0.05)*(0.95)^9≈0.046。(2)至少有2件产品存在缺陷的概率为:C(10,2)*(0.05)^2*(0.95)^8+C(10,3)*(0.05)^3*(0.95)^7≈0.252。(3)至多有2件产品存在缺陷的概率为:1-C(10,3)*(0.05)^3*(0.95)^7≈0.748。五、应用题答案及解析:1.解析:(1)该消费者表示满意的概率为:0.8。(2)该消费者表示不满意的概率为:0.2。(3)随机抽取10名消费者,其中有6名表示满意的概率为:C(10,6)*(0.8)^6*(0.2)^4≈0.201。2.解析:(1)该顾客表示非常喜欢新产品的概率为:0.6。(2)该顾客表示喜欢新产品的概率为:0.3。(3)随机抽取10名顾客,其中有8名表示非常喜欢新产品的概率为:C(10,8)*(0.6)^8*(0.4)^2≈0.125。3.解析:(1)该市民表示满意的概率为:0.7。(2)该市民表示不满意的概率为:0.3。(3)随机抽取10名市民,其中有7名表示满意的概率为:C(10,7)*(0.7)^7*(0.3)^3≈0.234。六、论述题答案及解析:1.解析:假设检验的基本步骤包括:提出假设、选择合适的检验方法、计算检验统计量、确定显著性水平、比较p值与显著性水平、得出结论。在进行假设检验时需要注意的问题包括:选择合适的检验方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论