




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市高三(5月)模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了2.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.3.记递增数列的前项和为.若,,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则()A. B.C. D.4.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.5.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.6.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.7.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象8.已知集合,,,则的子集共有()A.个 B.个 C.个 D.个9.已知,则的大小关系为A. B. C. D.10.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件11.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.12.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设复数满足,其中是虚数单位,若是的共轭复数,则____________.14.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.15.已知函数是定义在上的奇函数,且周期为,当时,,则的值为___________________.16.的展开式中项的系数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.18.(12分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.19.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点.20.(12分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosB(1)求b的值;(2)若cosB+3sin21.(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.2.B【解析】
根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.3.D【解析】
由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围.【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,,,,只有是该数列中的项,同理可以得到,,,也是该数列中的项,且有,,或(舍,,根据,,,同理易得,,,,,,,故选:D.【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题.4.C【解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.5.C【解析】
由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.6.A【解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.7.D【解析】
利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.8.B【解析】
根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.9.D【解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.10.D【解析】
结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.11.A【解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.12.B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由于,则.14.【解析】
利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【详解】如图:此四棱锥的高为,底面是长为,宽为2的矩形,所以体积.所以本题答案为.【点睛】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.15.【解析】
由题意可得:,周期为,可得,可求出,最后再求的值即可.【详解】解:函数是定义在上的奇函数,.由周期为,可知,,..故答案为:.【点睛】本题主要考查函数的基本性质,属于基础题.16.40【解析】
根据二项定理展开式,求得r的值,进而求得系数.【详解】根据二项定理展开式的通项式得所以,解得所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题.18.(1)(2)或【解析】
(1)根据题意计算得到,,得到椭圆方程.(2)设,联立方程得到,根据,计算得到答案.【详解】(1)由平行四边形的周长为8,可知,即.由平行四边形的最大面积为,可知,又,解得.所以椭圆方程为.(2)注意到直线的斜率不为0,且过定点.设,由消得,所以,因为,所以.因为点在以线段为直径的圆上,所以,即,所以直线的方程或.【点睛】本题考查了椭圆方程,根据直线和椭圆的位置关系求直线,将题目转化为是解题的关键.19.(1),.(2)【解析】
(1)利用,代入可求;消参可得直角坐标方程.(2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.20.(1)b=32【解析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求b的值,所以可以考虑到根据余弦定理将cosB,cosC分别用边表示,再根据正弦定理可以将sinAsinC转化为ac,于是可以求出b的值;(2)首先根据sinB+3cosB=2求出角B的值,根据第(1)问得到的b值,可以运用正弦定理求出ΔABC外接圆半径R,于是可以将a+c转化为2RsinA+2R试题解析:(1)由cosB应用余弦定理,可得a2化简得2b=3则b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b则a+c==sin=3=3sin又∵0<A<2π3,法二因为b=32得34又因为ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三边关系定理可知综上a+c∈(考点:1.正、余弦定理;2.正弦型函数求值域;3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢结构施工安全管理体系与措施
- 小学一年级道德与法治课程创新计划
- 塔吊管理与防攀爬安全措施
- 2025校园绿色艺术展览计划
- 特殊教育学校的教务支持计划
- 【库存管理课件】第八章库存控制管理
- 教育机构财务透明化工作计划
- 八年级学生数学能力提升措施
- 设备维保合同
- 安全色和安全标志课件
- 华文文学上课课件
- 反有组织犯罪法课件
- 动作经济原则课件
- 《学弈》说课稿公开课一等奖省优质课大赛获奖课件
- 幼儿园绘本故事:《鼹鼠的皮鞋车》 课件
- 工程概算表【模板】
- 《过程检测技术及仪表》实验指导书
- 信用修复申请书
- 旧厂房拆除施工组织方案
- 全合成水溶性线切割液配方
- DB14∕T 2447-2022 建设项目环境影响后评价技术导则 生态影响类
评论
0/150
提交评论