2025年山东省青岛市实验高中高三教学质量检测试题(一)数学试题文试题含解析_第1页
2025年山东省青岛市实验高中高三教学质量检测试题(一)数学试题文试题含解析_第2页
2025年山东省青岛市实验高中高三教学质量检测试题(一)数学试题文试题含解析_第3页
2025年山东省青岛市实验高中高三教学质量检测试题(一)数学试题文试题含解析_第4页
2025年山东省青岛市实验高中高三教学质量检测试题(一)数学试题文试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年山东省青岛市实验高中高三教学质量检测试题(一)数学试题文试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.1202.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.3.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知,则下列关系正确的是()A. B. C. D.5.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件7.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则()A. B. C. D.8.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.59.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.10.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.11.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.12.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4 B.8 C.9 D.27二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.14.若的展开式中各项系数之和为32,则展开式中x的系数为_____15.已知关于的方程在区间上恰有两个解,则实数的取值范围是________16.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.18.(12分)数列满足,,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.19.(12分)已知函数.(1)若在处导数相等,证明:;(2)若对于任意,直线与曲线都有唯一公共点,求实数的取值范围.20.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b=7,D是BC边上的点,且△ACD的面积为,求sin∠ADB.21.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.22.(10分)已知点、分别在轴、轴上运动,,.(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点,,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用.2.B【解析】

此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.3.B【解析】

分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B本题考查了充分必要条件,属于简单题.4.A【解析】

首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,,,所以,综上可得.故选:A本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.A【解析】

设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.6.C【解析】

利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.7.C【解析】

画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.故选:解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.8.D【解析】

由对数运算法则和等比数列的性质计算.【详解】由题意.故选:D.本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.9.A【解析】

由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.10.D【解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).11.A【解析】

根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.本题考查了几何概型的概率计算问题,是基础题.12.D【解析】

设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,,,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,,在中,由勾股定理得:,,解得,,故选:D本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【详解】解:因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中:由椭圆的定义:在双曲线中:,所以双曲线的实轴长为:,实半轴为则双曲线的离心率为:.故答案为:本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.14.2025【解析】

利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.15.【解析】

先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.【详解】因为关于的方程在区间上恰有两个解,令,所以方程在上只有一解,即有,直线与在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.16.2【解析】

利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.18.(1),;(2),证明见解析【解析】

(1)利用已知条件建立等量关系求出数列的通项公式.(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论.【详解】(1),,得是公比为的等比数列,,,当时,数列的前项积为,则,两式相除得,得,又得,;(2),故.本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题.19.(I)见解析(II)【解析】

(1)由题x>0,,由f(x)在x=x1,x2(x1≠x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,,利用导数性质能证明.(2)由得,令,利用反证法可证明证明恒成立.由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围..【详解】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,,下面先证明恒成立.若存在,使得,,,且当自变量充分大时,,所以存在,,使得,,取,则与至少有两个交点,矛盾.由对任意,只有一个解,得为上的递增函数,得,令,则,得本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.20.(1);(2).【解析】

(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根据面积公式求出长,根据余弦定理求出,由正弦定理求出,即可求出结论.【详解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.本题考查三角恒等变换求值、面积公式、余弦定理、正弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论