北师大版九年级上册数学全册教案集_第1页
北师大版九年级上册数学全册教案集_第2页
北师大版九年级上册数学全册教案集_第3页
北师大版九年级上册数学全册教案集_第4页
北师大版九年级上册数学全册教案集_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

b第一章特殊平行四边形

1.1菱形的性质与判定

第1课时

【教学目标】例:已知:在菱形ABCD中,对角线AC、BD相交

1.掌握菱形的概念、性质。于点0.

2.掌握菱形的性质定理“菱形的四条边相等”。求证:AC±BD,AC平分/BAD和/BCD,BD

3.掌握菱形的性质定理”菱形的对角线互相垂平分NABC和/ADC.

直,并且每条对角线平分一组对角”。

4.探索菱形的对称性。

【教学重难点】

重点:菱形的性质.

难点:菱形的轴对称需要用折叠和推理相结合的方

分析:由菱形的定义得AABD是什么三角形?

法,是本节的教学难点.

B0与0D有什么关系?根据什么?

【教学过程】

由此可得AC与BD有何关系?与/BAD有何关

一、复习引入

观察以下由火柴棒摆成的图形,议一议:系?根据什么?

证明::四边形ABCD是菱形,

;.AB=AD(菱形的定义),

BO=OD(平行四边形的对角线互相平分)

.,.ACXBD,AC平分/BAD(等腰三角形三线合

一的性质).

(1)二.个图形都是平行四边形吗?

同理,AC平分/BCD,BD平分/ABC和/ADC,

(2)与图一相比,图二与图三有什么共同的特点?

对角线AC和BD分别平分一组对角.

目的是让学生经历菱形的概念,性质的发现过程,

由定理2可以得出菱形是轴对称图形,它的两条对

并让学生注意以下几点:

角线所在的直线都是它的对称轴.另外,还可以从折叠来

(1)要使学生明确图二、图三都为平行四边形;

说明轴对称性.同时指出以上两个性质只是菱形不同于

(2)引导学生找出图二、图三与图一在边方面的差

一般平行四边形的特殊性质.菱形还具有平行四边形的

异.

所有共性,比如:菱形是中心对称图形,对称中心为两条

二、探究新知

对角线的交点.

再用多媒体教科书中有关菱形的美丽图案,让学

三、范例点击

生感受菱形具有工整,匀称,美观等许多优点.

例:在菱形ABCD中,对角线AC、BD相交于点O,Z

菱形也是特殊的平行四边形,所以它除具有一般

BAC=30°,BD=6,求菱形的边长和对角线AC的长.

平行四边形的性质外还具有一些特殊的性质.

定理1:菱形的四条边都相等.

这个定理要求学生自己完成证明,可以根据菱形

的定义推出,课堂上只需让学生说说理由就可以了,不

必写证明过程.

定理2:菱形的对角线互相垂直,并且每条对角线分析:本题是菱形的性质定理2的应用,由/BAC=

平分一组对角.30。,得出AABD为等边三角形,就抓住了问题解决的关

键.

九上数学教案(BS)1

解::四边形ABCD是菱形

,AB=AD(菱形的定义),四、巩固练习

AC平分NBAD(菱形的每条对角线平教材P4随堂练习

分一组对角)

又:/BAC=30°,

/.^BAD-60°,五、课堂小结:

本节课应掌握:一个定义(菱形的定义),二条定理

△ABD为等边三角形,

(菱形的性质定理),二个结论(菱形是轴对称图形,又是

.AB=BD=6.中心对称图形).

又:(》=(©=3(平行四边形的对角线互相平分),

AC±BD(菱形的对角线互相垂直).

222

由勾股定理得AO+BO=AB,六、布置作业

AAO=3V3AC=2A0=6V3.教材P4~5习题1.1

第2课时

【教学目标】结论:菱形判定定理1:四边都相等的四边形是菱

1.经历菱形的判定定理的发现过程.形.(板书)

2.掌握菱形的判定定理“四边相等的四边形是菱三、探究新知

形”.例1:已知:如图,在ABCD中,BDXAC,。为垂

3.掌握菱形的判定定理“对角线互相垂直的平行足.求证:四边形ABCD是菱形.

四边形是菱形”.

4.通过运用菱形知识解决具体问题,提高分析能力

和观察能力,并根据平行四边形、矩形、菱形的从属关

系,向学生渗透几何思想.

分析:在已知是平行四边形的情况下,要证明是菱

【教学重难点】

形,只要证明一组邻边相等.

重点:菱形的判定定理.

证明:•••四边形是平行四边形,

难点:菱形判定方法的综合应用.课本“做一做”既ABCD

(平行四边形的对角线互相平

需要一定的空间想象力,又要有较强的逻辑思维能力./.AO=CO

分).

【教学过程】

,?BD1AC,

一、复习引入

.'.AD=CD,

教师提问:菱形的定义和性质..••四边形ABCD是菱形(菱形的定义).

定义:一组邻边对应相等的平行四边形叫做菱形.结论:菱形判定定理2:对角线互相垂直的平行四

性质:除具备一般平行四边形的性质外,还具备四边形是菱形.

条边相等,对角线互相垂直,并且每条对角线平分一组猜想:对角线互相垂直平分的四边形是不是菱形?

对角判定一个四边形是不是菱形可根据什么来判定?启发:通过四个直角三角形的全等得到四条边

定义,此外还有两种判定方法,今天我们就要学习相等

菱形的判定.(板书课题)结论:对角线互相垂直平分的四边形是菱形.

二、创设情境,引入新课例2:如图,在矩形ABCD中,对角线AC的垂直平

学生拿出准备好的长方形纸片,按P6“做一做”中分线与AD,BC分别交于点E,F,求证:四边形AFCE

的图的方法对折两次,并沿第3个图中的斜线剪开,展是菱形.

开剪下的部分,猜想这个图形是哪一种四边形?一定是

菱形吗?为什么?剪出的图形四条边都相等,根据这个

条件首先证它是平行四边形,再证一组邻边相等,依定

义即知为菱形.

2九上数学教案(BS)

启发:已知对角线互相垂直,还需什么条件就能

说明四边形是菱形?

五、课堂小结

证明::四边形ABCD是矩形,本节课应掌握:

;.AE〃FC(矩形的定义),1.菱形常用的判定方法归纳为(学生讨论归纳后,

由教师板书):

AZ1=Z2.

(1)一组邻边相等的平行四边形.

(2)四条边相等的四边形.

XVZAOE=ZCOF,AO=CO,

(3)对角线互相垂直的平行四边形.

(4)对角线互相垂直平分的四边形.

AAOE^ACOF,

2.想一想:说明平行四边形、矩形、菱形之间的区

.,.EO=FO,别与联系.

A四边形AFCE是平行四边形(对角线互相平

分的四边形是平行四边形).

XVEF^AC,

四边形AFCE是菱形(对角线互相垂直的平

行四边形是菱形).

六、布置作业

四、巩固练习

1.教材P7习题1.2

1.教材P7、P9随堂练习.

2.教材P9〜10习题1.3

2.思考题:如图,AABC中,/A=9(T,/B的平分

线交AC于D,AH、DF都垂直于BC,H、F为垂足,

1.2矩形的性质与判定

第1课时

【教学目标】【显示投影片】

1.了解矩形的有关概念,理解并掌握矩形的有关教师活动:将收集来的有关长方形图片播放出来,

性质.让学生进行感性认识,然后定义出矩形的概念.

2.经过探索矩形的概念和性质的过程,发展学生矩形定义:有一个角是直角的平行四边形叫做矩形.

合情推理意识;掌握几何思维方法.(也就是小学学习过的长方形)

【教学重难点】教师活动:介绍完矩形概念后,为了加深理解,也为

重点:掌握矩形的性质,并学会应用.了继续研究矩形的性质,拿出教具,同学生一起探究下面

难点:理解矩形的特殊性.把握平行四边形的演变问题:

过程,迁移到矩形概念与性质上来,明确矩形是特殊的问题1:改变平行四边形活动框架,将框架夹角a变

平行四边形.为90。,平行四边形成为一个矩形,这说明平行四边形

【教学过程】与矩形具有怎样的从属关系?(教师提问)

一、联系生活,形象感知学生活动:观察教师的教具,研究其变化情况,可以

九上数学教案(BS)3

发现:矩形是平行四边形的特例,属于平行四边形,因此这样可求出OA=AB=2.5,;.AC=BD=2OA=5.

它具有平行四边形的所有性质.【活动方略】

问题2:既然它具有平行四边形的所有性质,那么教师活动:板书例1,分析例1的思路,教会学生解

矩形是否具有它独特的性质呢?(教师提问)题分析法,然后板书解题过程(课本P13).

学生活动:由平行四边形对边平行以及刚才a变为学生活动:参与教师讲例,总结几何分析思路.

【问题探究】(投影显示)

90°,可以得到a的补角也是90°从而得到:矩形的四个

角都是直角.如图,AABC中,ZA=2ZB,CD是AABC的高,E

评析:实际上,在小学学生已经学过长方形四个角

是AB的中点,求证::DE=1/2AC.

都是90°,这里学生不难理解.

教师活动:用橡皮筋做出两条对角线,让学生观察

这两条对角线的关系,并要求学生证明(口述).

学生活动:观察发现:矩形的两条对角线相等.口述

证明过程是:充分利用(SAS)三角形全等来证明.

分析:本题可从E是AB的中点切入,考虑应用三角

形中位线定理.应用三角形中位线必需找到另一个中点.

分析可知:可以取BC中点F,也可以取AC的中点G为

尝试.

口述::四边形ABCD是矩形,

ZABC=ZDCB=9O°,AB=DC.

又:BC为公共边,

/.AABC^ADCB(SAS),VE为AB巾点:EF/[AC,

;.AC=BD.

教师提问:A0=AC,BO=BD呢?BO是RtAABC的VZA=2ZB..'.ZFEB=2ZB,DF=BC=BF,

什么线?由此你可以得到什么结论?

*

学生活动:观察、思考后发现A0=I/2AC,.*.Z1=ZB,..ZFEB=2ZB=2Z1=Z1+Z2,

BO=1/2BD,BO是RtAABC的中线.由此归纳直角三角

形的一个性质:直角三角形斜边上的中线等于斜边的一.'.N1=N2,;.DE=EF=JAC.

半.fa)

证法二:取AC的中点G,库格DG、EG,如图(2).

直角三角形中,30°角所对的边等于斜边的一半

(师生回忆).VCD是ZSBC的高,

【设计意图】采用观察、操作、交流、演绎的手法

・••在RAADC中,DG=:AC=AG,

来解决重点,突破难点.

二、范例点击

例1:如图,在矩形ABCD中,两条对角线相交于点VE>AB的中点,.・・GE〃BC".G1=NB.

O,ZAOD=120°,AB=2.5,这个矩形对角线的长.(投.'.ZGDA=ZA=2ZB=2Z1,

影显示)

又/GDA=/1+Z2,.\Z1+Z2=2Z1,

2=/l",DE

教师活动:操作投影仪,引导、启发学生的分析思

路,教会学生如何书写辅助线.

分析:利用矩形对角线相等且平分得到OA=OB,由

学生活动:分四人小组,合作探索,想出几种不同

于NAOB=60°,因此,可以发现AAOB为等边三角形,

的证法.

4九上数学教案(BS)

证法一:取BC的中点F,连接EF、DF,如图(1).

【设计意图】补充这道演练题是训练学生的应用能力,提

高一题多解的意识,形成几何思路.

三、随堂练习

教材P13随堂练习

四、应用拓展

已知:如图,从矩形ABCD的顶点C作对角线BD的

垂线与ZBAD的平分线相交于点E,求

证:AC=CE.ZFAB.现在只要证明/BAF=NDAC即可,而实际上,

/BAF=/BDA=/DAC,问题迎刃而解.

五、课堂小结

本节课应掌握:

思路点机要证=可以=

1.矩形定义:有t个角是直角的平行四边形叫做矩

形,因此矩形是平行四边形的特例,具有平行四边形所

ZCAE,0%AE串分NBADJhMDAE=/BAE,有性质。

2.矩形性质归纳:

因此,从帔见ZCAE=ZrME-ZDAC.另夕卜一个

(1)边的性质:对边平行且相等.

角的性质:四个角都是直角.

W,CE1BD,itiUA作AF1BDfFJ'lA(2)

(3)对角线性质:对角线互相平分且相等.

F,(E可以将/£法化为ZFAE./F此二/心£一(4)对称性:矩形是轴对称图形.

六、布置作业

教材P13习题1.4第1、2题

(1)是不是平行四边形,(2)再看它有无直角.

2.矩形是特殊的平行四边形,它具有哪些性质?

(通过对矩形定义及性质的回顾,引出判定矩形除了定义

第2

【教学目标】

1.通过探索与交流,逐渐得出矩形的判定定理,并

会运用定理解决相关问题.

2.通过开放式命题,尝试从不同角度寻求解决问题

的方法.

【教学重难点】

重点:探索矩形判定定理的过程及应用.

难点:矩形判定定理的应用.

【教学过程】

一、创设情境,导入新课

通过上节课对矩形的学习,谁能回答以下问题:

1.判定四边形是矩形的方法是什么?(用定义)

九上数学教案(BS)5

课时(1)条件与结论各是什么?(引出条件与结论的关系)

(2)使一个平行四边形是矩形,已学过什么方法?(引

外,还有哪些方法,导入新课.)出矩形的定义证明)

二、探究新知(3)要证明一个角是直角,根据平行四边形相邻两个

活动一:矩形的判定定理一的探索角互补,只需证明什么?(引出证明两个三角形全等)

1.先请同学只用手中量角器量一下图形(甲)(乙)(4)如何选择要证明两个三角形全等,它们的条件是否

中的四边形的角(有几个直角).满足?

2.然后通过同桌同学交流用几个直角才能构成矩最后由学生说出整个证明的过程,教师进行适当的点

形,并说明理由.评与板书.

当判定定理一、定理二得出后,让学生总结矩形的三

(此问题的解决以动手实践,合作交流的形式进

种判定方法(定义,定理一与定理二),并对题设进行比

行,学生在探究过程中根据已有的知识积累一矩形的定

较、区分,使学生进一步明确定理应用的条件.

义,得出矩形的判定定理一.教师以合作者的身份深入学

三、范例点击

生中,了解学生的探究进程并适当给予点拨.)

例:如图所示,在6BCD中,E、F为BC上两点,

最后教师进行适当板书进行推证、讲解.在此过程

且BE=CF,AF=DE.求证:

中,全体同学可互相补充、互相评价,培养学生的语言表(l)AABF^ADCE;

达能力、推理能力.(2)四边形ABCD是矩形.

活动二:教师提问:矩形的对角线相等反过来对角

线相等的四边形是什么图形?在学生回答是或不是的情

况下,让学生依下列步骤进行探索.

L画任意两条长度相等的相交线段,并把它们的四

个顶点顺次连接,看是不是矩形?分柝(1)由四边形ABCD

2.画两条长度相等并且一条平分另一条的线段,是平行四边形,得

并把它们的四个顶点顺次连接,看是不是矩形?AB=CD,再结合已知条

3.画两条长度相等并且互相平分的线段,并把它件,利用“SSS”可证得

们的四个顶点顺次连接,看是不是矩形?A/BF当ADCE;

4.然后通过同桌同学交流用怎样的两条长度相等(2)只需再证

在小噩限曙窜go。即

的线段才能构成矩形,并说明理由.

;缚二DC,BF=CE,AF=DE,

最后通过教师演示动画,师生进行适当交流、归纳、

C

•••W^^-F6E=CF/

讲解,得出矩形的判定定理二.

⑵.••锲七言9伏RE,C遑萧NC.

(此问题的解决仍以分组合作交流的形式进行,通

过此种互动过程,让全体学生参与其中,获得不同程度的EF,BF=CE.

:四边形

收获,体验成功的喜悦.)

ABCD是平行四边形,二

AB=DC.

活动三:矩形的判定定理二的证明.

••,四边形ABCD是平行四边形,

已知:在平行四边形ABCD中,AC=BD,

求证:平行四边形ABCD是矩形..'.AB//CD,.,.ZB+ZC=180",

;.NB=90。,.•.平行四边形ABCD是矩形.

四、拓展应用

为了帮助学生巩固定理,应用如下:

应用一:工人师傅要检验两组对边相等的四边形是

对于判定定理二的证明教师从以下几个方面进行与否成矩形,你有没有方法帮助工人师傅解决这个问题?

学生交流.(这一题是由引入判定定理二改编而成的,主要考查学生

6九上数学教案(BS)

利用矩形的判定定理解决实际问题的能力.)

应用二:例题讲解

一张四边形纸板ABCD形状如图,它的对角线互相

垂直.若要从这张纸板中剪出一个矩形,并且使它的四个

顶点分别落在四边形ABCD的四条边上可以怎样剪?

对于这个问题的解决教师引导学生回顾过去证明依

次连接四边形各边中点所得的四边形是平行四边形的经

验,使学生联想到连接四边形ABCD的两条对角线,然后

运用中位线定理,这样就解决了这个问题.

九上数学教案(BS)7

五、巩固练习需的条件,辨析判定定理的题设,以便更好地应用定理.

这两个问题的解决分别应用所学定理,使学生能够学以致

练习一:

用.这两道题的解决方法是先采用独立完成形式,有困难

1.内角都相等的四边形是矩形.()的学生可以求助老师或同学,学生互助完成,派学生代表

2.对角线相等的四边形是矩形.()板书讲解.)

3.对角线互相平分且相等的四边形是矩形.。

4.一组邻角相等的平行四边形是矩形.()

5.对角互补的平行四边形是矩形.()六、课堂小结

练习二:如图,AC,BD是矩形ABCD的两条对角线,本节课应掌握:

AE=CG=BF=DH.求证:四边形EFGH是矩形.矩形常用的判定方法归纳为(学生讨论归纳后,由

教师板书):

(1)有一个角是直角的平行四边形叫做矩形.

(2)对角线相等的平行四边形是矩形.

(3)有三个角是直角的四边形是矩形.

七、布置作业

教材P16习题1.5第1、2题

(练习一,二是课内练习,主要为加强学生对所学定理

的理解和掌握,使学生能将给出的条件转化为应用定理所

1.3正方形的性质与判定

第1课时

【教学目标】过);正方形四个角都是直角(小学学过).

了解正方形的有关概念,理解并掌握正方形的性质实验活动:教师拿出矩形按左图折叠.然后展开,

定理.让学生发现:只要矩形一组邻边相等,这样的矩形就是正

【教学重难点】方形;同样,教师拿出活动菱形框架,运动中让学生

重点:探索正方形的性质定理.发现:只要菱形有一个内角为90°,这样的特殊菱形也

难点:掌握正方形的性质的应用方法,把握正方形既

是矩形又是菱形这一特性来学习本节课内容.

【教学过程】

一、探究导入

【显示投影片】教师活动:组织学生联想正方形还具有哪些性质,板

显示内容:展示生活中有关正方形的图片,幻灯片

(多幅).

【活动方略】

教师活动:操作投影仪,边展示图片,边提出下面的

问题:

1.同学们观察显示的图片后,有什么联想?正方形

四条边有什么关系?四个角呢?学生活动:观察、联想到它是矩形,所以具有矩形

2.正方形是矩形吗?是菱形吗?为什么?的所有性质;它又是菱形所以它又具有菱形的一切性质,

3.正方形具有哪些性质呢?归纳如下:

学生活动:观察屏幕上所展示的生活中的正方形图

片.进行联想.易知:L正方形四条边都相等(小学已学

&九上数学教案(BS)

正方形定义:有一组邻边相等,并且有一个角是直角

角形.

的平行四边形叫做正方形.

正方形性质:

(1)边的性质:对边平行,四条边都相等.

(2)角的性质:四个角都是直角.

(3)对角线的性质:两条对角线互相垂直平分且相

等,每条对角线平分一组对角.

(4)对称性:是轴对称图形,有四条对称轴.分析:本题要证NEFC=90°,从已知条件分析可以

【设计意图】采用合作交流、发现、归纳的方式来得到只要利用勾股定理逆定理,就可以解决问题.这里应

解决重点问题,突破难点.用到正方形性质.

二、探究新知【活动方略】

【课堂演练】(投影显示)教师活动:用投影仪显示演练题2,组织学生应用正

演练题1:如图,已知四边形ABCD是正方形,对方形和勾股定理逆定理分析,并请同学上讲台分析思路,

角线AC与BD相交于0,MN//AB,且分别与板演.

OA、0B相交于M、N.学生活动:先独立分析,找到证明思路是利用勾股定

理的逆定理解决问题.

证明:设AB=4a,在正方形ABCD中,DC=BCNa,

AF=FB=2a,AE=a,DE=3a.

VZB=ZA=ZD=90°,由勾股定理得:

EF2+CF三(AE2+AF2)+(CB2+BF2)=(a2+4a2)+

(16a2+4a2)=25a2,

分析:本题是证明根据正方形性质,可以

BM=CN,CE=CD2+DE2=(4a)2+(3a)三25a2,

证明、所在与是否全等.(在

BMCNABOMACON2).-.EF2+CF2=CE2.

(1)的基础上完成,欲证BM±CN.只需证N5+ZCMG=

由勾股定理的逆定理可知ACEF是直角三角形.

就可以了.

90°【设计意图】补充两道关于正方形性质应用的演练

【活动方略】

题,提高学生的应用能力.

教师活动:操作投影仪.组织学生演练,巡视,关注

三、范例点击

“学困生”;等待大部分学生练习做完之后,再请两位学

例:已知:如图,四边形ABCD是正方形矩形PECF

生上台演示,交流.

的顶点P在正方形ABCD的对角线BD上,E在BC上,F

学生活动:课堂演练,相互讨论,解决演练题的问

在CD上,连接AC、AP、PC、EF,若EC=4,CF=3,求PA

题.

的长.

证明:(1)•••四边形ABCD是正方形,D

AZCOB=ZBOM=9O°,OCOB.

VMN//AB,.\Z1=Z2,ZABO=Z3,

F

XVZ1=ZABO=45°>AZ2=Z3,

.,.OM=ON,

C

.,.ACON^ABOM,ABM=CN.

分析:本题运用矩形对角线相等的性质可得EF=PC,

⑵由(1)知ABOM学ACON,

运用正方形的性质可得AP=PC,进而可得AP=EF.因此,

AZ4=Z5,VZ4+ZBMO=90°,AZ5+ZBMC=90

只要求出EF的值即可.

°ZCGM=90°,.-.BM±CN.

解::四边形PECF是矩形,二PC=EF.在RtAEFC

演练题2:如图,正方形ABCD中,点E在AD边上,

中,

且-AE=AD,F为AB的中点,求证:ACEF是直角三EC=4,CF=3,J.

4

九上数学教案(BS)9

EF='

.1.PC=5.四边形ABCD是正方形,,BD_LAC且BD平

分AC,即BD是AC的垂直平分线.I,点P在BD上,

PA=PC=5.

【方法归纳】与矩形对角线有关的计算问题,主要

运用矩形的对角线相等和正方形的对角线的性质,借助第

三条线段作“媒介”求线段的长.

四、巩固练习

教材P21随堂练习

五、课堂小结

本节课应掌握:

1.正方形的概念:

有一组邻边相等,并且有一个角是直角的平行四边

形叫做正方形.

2.正方形的性质

(1)正方形的四个角都是直角,四条边相等.

(2)正方形的对角线相等且互相垂直平分.

(3)正方形既是轴对称图形,也是中心对称图形.

六、布置作业

教材P22习题1.7第1、2、3题

10九上数学教案(BS)

第2课时

【教学目标】二、探究新知

1.知道正方形的判定方法,会运用平行四边形、矩形、菱1.探索正方形的判定条件:

形、正方形的判定条件进行有关的论证和计算.

学生活动:四人一组进行讨论研究,老师巡回其间,

2.经历探究正方形判定条件的过程发展学生初步的

综合推理能力,主动探究的学习习惯,逐步掌握说理的基进行引导、质疑、解惑,通过分析与讨论,师生共同总结

本方法.出判定一个四边形是正方形的基本方法.

3.理解特殊的平行四边形之间的内在联系培养学生(1)直接用正方形的定义判定,即先判定一个四边形

是平行四边形,若这个平行四边形有一个角是直角,并且

辩证看问题的观点.

有一组邻边相等,那么就可以判定这个平行四边形是正方

【教学重难点】形;

重点:掌握正方形的判定条件.(2)先判定一个四边形是矩形,再判定这个矩形是菱

难点:合理恰当地利用特殊平行四边形的判定进行有形,那么这个四边形是正方形;

关的论证和计算.(3)先判定四边形是菱形,再判定这个菱形是矩形,

【教学过程】那么这个四边形是正方形.

一、创设情境,引入新课后两种判定均要用到矩形和菱形的判定定理.矩形

我们学习了平行四边形、矩形、菱形、正方形,那么和菱形的判定定理是判定正方形的基础.这三个方法还可

思考一下,它们之间有怎样的包含关系?请填入下图中.写成:有一个角是直角,且有一组邻边相等的四边形是正

方形;有一组邻边相等的矩形是正方形;有一个角是直角

的菱形是正方形.

上述三种判定条件是判定四边形是正方形的一般方

法,可当作判定定理用,但由于判定平行四边形、矩形、

菱形的方法各异,所给出的条件各不相同,所以判定一个

四边形是不是正方形的具体条件也相应可作变化在应用

通过填写让学生形象地看到正方形是特殊的矩形也时要仔细辨别后才可以作出判断.

是特殊的菱形,还是特殊的平行四边形;而正方瓶矩形、2.正方形判定条件的应用

菱形都是平行四边形;矩舷菱形都是特殊的平行四边形.例1:判断下列命题是真命题还是假命题?并说明理

1.怎样判断一个四边形是平行四边形?由.

2.怎样判断一个四边形是矩形?(1)四条边相等且四个角也相等的四边形是正方形;

3.怎样判断一个四边形是菱形?⑵四个角相等且对角线互相垂直的四边形是正方形;

4.怎样判断一个平行四边形是矩形、菱形?(3)对角线互相垂直平分的四边形是正方形;

议一议:你有什么方法判定一个四边形是正方形?(4)对角线互相垂直且相等的四边形是正方形;

(5)对角线互相垂直平分且相等的四边形是正方形.

-----------------------------►矩形-----「

师生共析:

(1)是真命题因为四条边相等的四边形是菱形又

四个角相等,根据四边形内角和定理知每个角为90。,

所以由有一个角是直角的菱形是正方形可以判定此命题

-------------平行四边形---------正方形

三个极定理'角线是真命题.

⑵真命题,由四个角相等可知每个角都是直角,是矩

定Oy相垂直形,由对角线互相垂直可判定这个矩形是菱形,所以根据

四边相等\?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论