




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数第五章第6讲正弦定理、余弦定理及解三角形考点要求考情概览掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题考向预测:从近三年高考情况来看,本讲是高考的必考内容.预计本年度会以对正、余弦定理的考查为主,利用这两个定理解三角形(求三角形边或角),解与三角形面积有关的最值问题.此外,判断三角形的形状及三角形内三角函数的计算也不容忽视.题型既可以是客观题,也可以是解答题,属中档题型.学科素养:主要考查直观想象、逻辑推理、数学运算的素养栏目导航01基础整合
自测纠偏03素养微专
直击高考02重难突破
能力提升04配套训练基础整合自测纠偏1a2+c2-2accosB
a2+b2-2abcosC
2RsinB
2RsinC
sin
A∶sin
B∶sin
C
【特别提醒】在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.【答案】A【答案】D【答案】B【答案】A
6.(教材改编)在△ABC中,若acos
A=bcos
B,则这个三角形的形状为____________.【答案】等腰三角形或直角三角形2.三角形中的射影定理在△ABC中,a=bcos
C+ccos
B;b=acos
C+ccos
A;c=bcos
A+acos
B.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin
A>sin
B⇔cos
A<cos
B.判断下面结论是否正确(请在括号中打“√”或“×”):(1)三角形中三边之比等于相应的三个内角之比. (
)(2)在△ABC中,若sin
A>sin
B,则A>B. (
)(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.
(
)【答案】(1)×
(2)√
(3)×重难突破能力提升2利用正弦、余弦定理解三角形【答案】(1)A
(2)B
(3)45°,30°,105°【解题技巧】解三角形的一般方法(1)已知两角和一边,如已知A,B和c,由A+B+C=π求C,由正弦定理求a,b.(2)已知两边和这两边的夹角,如已知a,b和C,应先用余弦定理求c,再应用正弦定理先求较短边所对的角,然后利用A+B+C=π求另一角.(3)已知两边和其中一边的对角,如已知a,b和A,应先用正弦定理求B,由A+B+C=π求C,再由正弦定理或余弦定理求c,要注意解可能有多种情况.(4)已知三边a,b,c,可应用余弦定理求A,B,C.【答案】(1)B
(2)D
与三角形面积有关的问题示通法
判断三角形的形状有两种途径,一是角化边,二是边化角.求解最值或范围有两种方法,一是利用基本不等式,二是转化为三角函数,利用三角函数的最值方法处理.正弦、余弦定理的简单应用【答案】B
【解题技巧】1.判断三角形形状的方法(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A+B+C=π这个结论.2.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.3.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,
已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如0<A<π,b-c<a<b+c,三角形中大边对大角等.【答案】(1)A
(2)见解析素养微专直击高考3素养提升类——数学运算:求三角形中最值问题的学科素养典例精析【考查角度】正弦定理、余弦定理、三角形面积公式以及基本不等式的应用问题.【核心素养】数学抽象、数学运算.【思路导引】(1)由正弦定理和余弦定理,求得cos
B的值,从而求得的值;(2)由S△ABC=S△ABD+S△DBC,求得ac=a+c,利用基本不等式求出4a+c的最小值.【解题技巧】求三角形中的最值一般可采用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂职业学院《意大利文学史》2023-2024学年第二学期期末试卷
- 教具及类似用具项目安全评估报告
- 长春工程学院《车辆设计》2023-2024学年第二学期期末试卷
- 北京化工大学《建筑模型》2023-2024学年第二学期期末试卷
- 江苏省苏州市市辖区市级名校2025年初三下学期期中考试物理试题(文理)试卷含解析
- 同济大学《医学美容护理》2023-2024学年第二学期期末试卷
- 天津音乐学院《当代世界文学》2023-2024学年第一学期期末试卷
- 河北公安警察职业学院《燃气输配课程设计》2023-2024学年第二学期期末试卷
- 燕山大学《法语》2023-2024学年第一学期期末试卷
- 长沙医学院《互联网金融服务营销》2023-2024学年第二学期期末试卷
- 医院患者自杀应急预案
- 幼儿园大班绘本《爱书的孩子》无声PPT
- DB3311T 132-2020 住宅小区物业服务规范
- (中职)门店运营实务教学ppt课件(完整版)
- 2022更新国家开放大学电大《计算机应用基础(专)》终结性考试大作业答案任务一
- 3.无人机在风电系统应用解决方案
- 广东省异地就医备案登记表
- 人教鄂教版四年级下册科学全册教案
- 幼儿绘本故事:小鲁的池塘
- SIEMENS-S120变频器硬件、软件培训(高端培训)课件
- CA6132普通车床使用说明书
评论
0/150
提交评论