




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微专题17一般三角形及其性质考点精讲构建知识体系考点梳理1.三角形的分类(1)按边分三边都不相等的三角形(2)按角分:锐角三角形、②、钝角三角形2.三角形的基本性质(6年4考)(1)三边关系:③,④(2)角的关系内角和定理:(3)边角关系:同一个三角形中,等边对⑧(4)稳定性:三角形具有稳定性3.三角形中的重要线段(6年7考)四线图形性质延伸中线AD是中线BD=⑨=⑩BC(1)S△ABD=S△ACD=12S△ABC(2)三角形三条中线的交点为三角形的重心高线AD是高线AD⊥⑪,即∠ADB=∠ADC=90°三角形的三条高线所在的直线的交点为三角形的垂心角平分线AD是角平分线∠BAD=⑫=12∠(1)三角形三条内角平分线的交点为三角形的内心;(2)内心到三角形三边距离相等中位线DE是中位线DE∥BC且DE=⑬BC(1)△ADE与△ABC相似,其相似比为1∶2,面积比为1∶4;(2)当三角形遇到中点时,常构造三角形中位线练考点1.已知三角形的两个内角都小于40°,则这个三角形是三角形.(填“锐角”“直角”或“钝角”)2.若某三角形的三边长分别为3,4,m,则m的值可以是.3.如图,在△ABC中,∠A=60°,∠B=80°,则∠ACD=°.第3题图4.如图,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是()第4题图A.20°B.35°C.40°D.70°高频考点考点1三角形的基本性质(6年4考)例1如图,D是△ABC中BC边上一点,连接AD.例1题图(1)若AB=3,AC=2,则BC长度的取值范围是;(2)若∠B=20°,∠C=40°.①若AD平分∠BAC,则∠CAD的度数为;②若∠DAC=2∠BAD,则∠ADC的度数为.变式1如图,CE是△ABC的外角∠ACD的平分线,CE交BA的延长线于点E,∠B=35°,∠E=25°,则∠ACD的度数为()A.100° B.110° C.120° D.130°变式1题图考点2三角形中的重要线段(6年7考)例2(中线、中位线)如图,在△ABC中,AD是中线,AB=10,AC=6.例2题图(1)△ABD与△ACD的周长差为;(2)若E为AB的中点,连接DE,则DE长为;(3)点E在边AB上,连接DE.①若△ABC的周长被DE分成的两部分的差是2,则线段AE的长为;②若DE平分△ABC的周长,则AE长为.例3(高线、角平分线)如图,在△ABC中,CD,CE分别是△ABC的高和角平分线,∠A=α,∠B=β(α>β).例3题图(1)若α=70°,β=40°,则∠DCE=;(2)试用含α,β的代数式表示∠DCE=;(3)若BC∶AC=5∶3,S△BEC=9,则S△ABC=.真题及变式命题点1三角形的基本性质(6年4考) 1.(2022广东3题3分·人教八上习题改编)下列图形中有稳定性的是()A.三角形 B.平行四边形 C.长方形 D.正方形2.(2024揭阳普宁模拟)若使用如图所示的a,b两根直铁丝做成一个三角形框架,需要将其中一根铁丝折成两段,则可以分为两段的铁丝是()A.a,b都可以 B.a,b都不可以 C.只有a可以 D.只有b可以第2题图命题点2三角形中的重要线段(6年7考) 3.(2022广东5题3分)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()第3题图A.14 B.12 C.1 D.3.1变条件——增加角平分线如图,在△ABC中,点D,E分别为AB,AC的中点,BE平分∠ABC,若∠ABC=50°,则∠C的度数为()变式3.1题图A.25°B.50°C.65°D.90°4.(2020广东6题3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.22 C.16 D.44.1变条件——将三边中点变为一边中线已知AD是△ABC的中线,AB=4,AC=3.若△ACD的周长为8,则△ABD的周长为.新考法5.[结合量角器]如图,点D,E分别是△ABC的两边AB,AC上的点,连接DE,CD,DE与量角器的0刻度线重合,点D与量角器的圆心重合.若∠A=20°,BC=DC,DE=EC,则∠ACB的度数为()第5题图A.70° B.75° C.80° D.85°
考点精讲①等边三角形②直角三角形③任意两边的和大于第三边④任意两边的差小于第三边⑤三角形三个内角的和等于180°⑥等于⑦大于⑧等角⑨CD⑩12⑪⑫∠CAD⑬1练考点1.钝角2.5(答案不唯一)3.1404.B高频考点例1(1)1<BC<5;(2)①60°【解析】∵∠B=20°,∠C=40°,∴∠BAC=180°-∠B-∠C=120°,∵AD平分∠BAC,∴∠CAD=60°;②60°【解析】∵∠DAC=2∠BAD,∴∠BAD+∠DAC=3∠BAD=120°,∴∠BAD=40°,∵∠B=20°,∴∠ADC=∠BAD+∠B=60°.变式1C例2(1)4【解析】∵AD是中线,∴BD=CD,∵△ABD的周长=AB+AD+BD,△ACD的周长=AC+CD+AD,∴△ABD的周长与△ACD的周长的差即AB与AC的差,∵AB-AC=4,∴△ABD与△ACD的周长差为4.(2)3【解析】∵AD是中线,∴D是BC的中点,∵E为AB的中点,∴DE是△ABC的中位线,∴DE=12AC=3(3)①1或3【解析】可分为两种情况,①BE+BD的值比AE+AC+CD大2时,即BE-(AE+AC)=2,∵AB=10,AC=6,∴AE=1;②AE+AC+CD的值比BE+BD大2时,即AE+AC-BE=2,∵AB=10,AC=6,∴AE=3,综上,线段AE的长为1或3.②2【解析】∵DE平分△ABC的周长,∴BE=AE+AC,∵AB=10,AC=6,BE+AE=AB,∴AE=2.例3(1)15°【解析】由题意得,∠ACB=180°-(α+β)=180°-(70°+40°)=70°,∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=35°.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°-α=20°,∴∠DCE=∠ACE-∠ACD=35°-20°=15(2)α-β2【解析】由题意得,∠ACB=180°-(∠A+∠B)=180°-(α+β),∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=90°-12(α+β).∵CD是高线,∴∠ADC=90°,∴∠ACD=90°-∠BAC=90°-α,∴∠DCE=∠ACE-∠ACD=90°-12(α+β)-(90(3)725【解析】如解图,过点E分别向BC,AC作垂线,垂足分别为点F,G,∵CE为∠BCA的平分线,∴EF=EG,由题意得S△BEC=12×BC×EF=9,S△ECA=12×AC×EG,∵BC∶AC=5∶3,∴S△ECA=35S△BEC=275,∴S△ABC=S△ECA+S例3题解图真题及变式A2.C【解析】三角形两边之和大于第三边,两根长度分别为5cm和4cm的铁丝做一个三角形的框架,可以把5cm的铁丝分为两段.∵5>4,∴满足两边之和大于第三边.3.D【解析】∵在△ABC中,点D,E分别为AB,AC的中点,∴DE为△ABC的中位线,∴DE=12BC=2变式3.1C【解析】∵点D,E分别为AB,AC的中点,∴AD=BD,DE为△ABC的中位线,∴DE∥BC,∴∠ADE=∠ABC=50°,∵BE平分∠ABC,∴∠ABE=∠CBE=∠DEB=25°,∴BD=DE,∴AD=DE,∴∠DAE=∠DEA=12(180°-∠ADE)=65°,∴∠C=∠DEA=654.A【解析】如解图,∵点D,E,F分别为△ABC三条边的中点,∴DE,DF,EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AB,∴△DEF的周长为DE+DF+EF=12(BC+AC+AB)=12第4题解图变式4.19【解析】∵AD是△ABC的中线,∴BD=CD,∵△ACD的周长为8,即A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新模进度管理办法
- 2024年天津市静海区普通外科学(副高)考试题含答案
- 抗疫贷款管理办法
- 放疗设备管理办法
- 拥军拥属管理办法
- 德州小区管理办法
- 2024年陕西省丹凤县急诊医学(副高)考试题含答案
- 新疆暖气管理办法
- 2024年山东省阳谷县急诊医学(副高)考试题含答案
- 2024年山东省齐河县急诊医学(副高)考试题含答案
- 宁海县三资管理办法
- 2025版本的房屋征收补偿协议
- 2025社区工作者考试试题(含答案)
- 【真题】人教版七年级下学期7月期末数学试题(含解析)湖南省长沙市长沙市一中教育集团联考2024-2025学年
- 2025年陕西省中考英语试题卷(含答案及解析)
- SAVI综合征靶向治疗研究进展
- 氧化钨化学计量比对其物理化学性质的影响规律
- 口腔诊所污水管理制度
- DZ/T 0275.5-2015岩矿鉴定技术规范第5部分:矿石光片鉴定
- 苹果授权协议书
- 村庄环境整治协议书
评论
0/150
提交评论