2025年中考数学专题复习:利用“将军饮马”解决线段最值问题(含解析)_第1页
2025年中考数学专题复习:利用“将军饮马”解决线段最值问题(含解析)_第2页
2025年中考数学专题复习:利用“将军饮马”解决线段最值问题(含解析)_第3页
2025年中考数学专题复习:利用“将军饮马”解决线段最值问题(含解析)_第4页
2025年中考数学专题复习:利用“将军饮马”解决线段最值问题(含解析)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

利用“将军饮马”解决线段最值问题方法突破练1.如图,在平面直角坐标系中,已知点A(2,1),B−32,在x轴上找一点P,使.2.如图,在平面直角坐标系中,已知点A(1,1),B(2,4),在直线x=3上找一点P,使得|PA−PB|的值最大,求|PA−PB|的最大值.3.如图,在平面直角坐标系中,A−20,B13,4.如图,已知直线y=−x+4与y轴、x轴分别交于A,B两点,点C的坐标为(0,1).点D,E分别是线段OB,AB上的动点,求△CDE周长的最小值.5.如图,在平面直角坐标系中,A−3设问进阶练例如图,抛物线y=−x²+4x+2与x轴交于点A,B,与y轴交于点C,抛物线的对称轴为直线l,顶点为点D,点C关于直线l的对称点为点E.(1)如图①,若点P是y轴上一动点,当.BP+PE取得最小值时,求点P的坐标;(2)如图②,连接CD,点Q是x轴上一动点,连接CQ,DQ,求△CDQ周长的最小值;(3)如图③,若点M为y轴上一动点,点N为x轴上一动点,求四边形DENM周长的最小值.综合强化练1.如图,抛物线y=ax²+bx+3a≠0与x轴交于A,B(3,0)两点(点A在点B的左侧),且.AB=4,(1)求抛物线的解析式;(2)求证:BC⊥CD;(3)若点M为OB上一动点,点N为DB上一动点,是否存在点M,N使得△CMN的周长最小?若存在,请求出点M,N的坐标及.△CMN周长的最小值;若不存在,请说明理由.作图区答题区

2.如图①,抛物线y=ax2+bx−(1)求抛物线的解析式;(2)如图②,连接AC,BC,点M为△ABC内一点,连接MA,MC,分别以AM,AC为边,在它们的上方作等边△AME,等边△ACF,连接EF,求证:EF=CM;(3)在直线BC上是否存在一点P,使得PA+PD的值最小?若存在,请求出点P的坐标;若不存在,请说明理由.作图区答题区考向3利用“将军饮马”解决线段最值问题一阶方法突破练1.解:作图,确定线段和最小时动点的位置,如解图,作点A关于x轴的对称点A',连接BA'交x轴于点P,点P即为所求,连接AP.∵点A与点A'关于x轴对称,∴AP=A'P,∴PA+PB=P此时PA+PB的值最小.利用直线解析式求坐标.∵A(2,1),∴A'(2,-1).∵B(-3,2),∴直线BA'的解析式为y=−35x+15.∴当PA+PB取得最小值时,点P的坐标为((132.解:作图,确定线段差最大时动点的位置.如解图,连接AB并延长与直线x=3交于点P,点P即为所求,此时|PA-PB|的值最大,最大值为AB的长,利用勾股定理求线段的长.∵A(1,1),B(2,4),∴AB=∴|PA-PB|的最大值为103.解:如解图,作点A关于直线l的对称点A',连接A'B,交直线l于点C',连接A'C,则AC+BC=A'∵点A与点A'关于直线l:y=x对称,A(-2,0),∴A'(0,-2).∵B(1,3),∴直线A'B的解析式为y=5x-2.联立y=5x−2y=x,解得∴当AC+BC取得最小值时,点C的坐标为14.解:如解图,作点C关于AB,OB的对称点C',C",连接AC',C'E,C"D,C'C",C'C"分别交AB,OB于点E',D',则CE=C'E,CD=C"D,△CDE的周长为CE+CD+DE=∴当C',E,D,C''四点共线时,△CDE的周长取得最小值,此时点E与点E'重合,点D与点D'重合,∴△CDE周长的最小值即为C'C"的长.∵直线y=-x+4,点C(0,1),∴AO=4,OC=1,∠OAB=45°,∴AC=3,∵点C关于AB的对称点为点C',∴∠C'AB=45°,AC'=AC=3,∴∠CA∵点C关于OB的对称点为点C",∴CC"=2,∴AC"=5,∴在Rt△C'AC"中,C∴△CDE周长的最小值为345.解:如解图,分别作点A关于x轴的对称点E、点B关于y轴的对称点F,连接EF交x轴于点D',交y轴于点C',连接AD',BC'.在x轴,y轴上分别任取一点D,C,连接AD,BC,CD,则AD'=D'E,BC'=C'F,∴AB+BC+CD+AD≥AB+BC'+C∵A(-3,-1),B(-1,-3),∴E(-3,1),F(1,-3),∴AB=2∴AB+EF=6∴四边形ABCD周长的最小值为62.二阶设问进阶练例解:(1)如解图①,作点E关于y轴的对称点E',连接E'B与y轴交于点P,此时BP+PE取得最小值,为BE'的长,根据题意,令x=0,则y=2,∴C(0,2),令y=0,解得x=2+6或∴B∵抛物线的对称轴为直线x=−4∴E(4,2),∴E'(-4,2),∴直线BE'的解析式为y=−6+615∴当BP+PE取得最小值时,点P的坐标为(0,6+4【一题多解】如解图②,作点B关于y轴的对称点B',连接B'E与y轴交于点P,此时BP+PE取得最小值,为B'E的长,根据题意,令x=0,则y=2,∴C(0,2),令y=0,解得.x=2+6或x=2−6,∴B2+60,∵抛物线的对称轴为直线x=−42×−1=2,点C与点E关于抛物线对称轴对称,∴E(4,2),∵点B与点B'关于y轴对称,(2)∵CD长为定值,∴当CQ+DQ的值最小时,△CDQ的周长最小.如解图③,作点C关于x轴的对称点C',连接C'D交x轴于点Q,连接CQ,此时CQ+DQ的值最小,为C'D的长,过点D作DF⊥y轴于点F.由抛物线解析式可知顶点D(2,6),∴CF=4,DF=2,∴CD=C∵点C与点C'关于x轴对称,∴CQ=C'Q.∴CQ+DQ=∵C(0,2),∴C'(0,-2),∴C'F=8.∴∴△CDQ周长的最小值为2【一题多解】∵CD长为定值,∴当CQ+DQ的值最小时,△CDQ的周长最小.如解图④,作点D关于x轴的对称点D',连接CD'交x轴于点Q,连接DQ,此时,CQ+DQ的值最小,为CD'的长,过点C作CH⊥DD'于点H,由抛物线解析式可知顶点D(2,6),∴D'(2,-6),∴CH=2,HD'=8,∴CD'=CH2(3)由(1)(2)知,D(2,6),E(4,2),如解图⑤,作点E关于x轴的对称点E',作点D关于y轴的对称点D',连接D'E'交y轴于点M',交x轴于N',连接DM',EN',则DM'=D'M',EN'=E'N',∴D'(-2,6),E'(4,-2),∵四边形DENM的周长=DM+MN+NE+DE≥D∴当点M在M',点N在N'时四边形DENM的周长取得最小值,最小值为D'∵D2−4∴四边形DENM周长的最小值为10+2三阶综合强化练1.(1)解:∵抛物线y=ax²+bx+3a≠0∴将A,B两点的坐标代入抛物线的解析式,得a−b+3=09a+3b+3=0,解得∴抛物线的解析式为y=−x²+2x+3;(2)证明:由(1)得抛物线的解析式为y=−x²+2x+3,∴抛物线的对称轴为直线x=−∴抛物线顶点D的坐标为(1,4),∴CD=BC=BD=∴CD²+BC²=BD²,△BCD为直角三角形,∴∠BCD=90°,∴BC⊥CD;(3)解:存在.如解图,作点C关于x轴的对称点C',点C关于BD的对称点C",CC"交BD于点E,连接C'C",分别交OB,BD于点M,N,此时△CMN周长最小,最小值为CN+MN+MC=C由(2)得C(0,3),D(1,4),∵B(3,0),∴直线BD的解析式为y=-2x+6①,∴直线CC"的解析式为y=联立①②,得−2x+6=解得x=∴E∵点C与点C'关于x轴对称,∴C联立①③得,-2x+6=3x-3,解得x=95综上所述,当M(1,0),,N⁽9515,)时,此时△CMN的周长最小,最小值为2.(1)解:∵抛物线y=a∴令x=0,解得y=−∵OA=3OC,∴OA=3,∴A(-3,0),∵B(1,0),∴将A,B两点的坐标代入抛物线解析式,得9a−3b−3=0a+b−∴抛物线的解析式为y=(2)证明:∵△AME和△ACF为等边三角形,∴AE=AM,AF=AC,∠EAM=∠FAC=60°,∴∠EAM-∠FAM=∠FAC-∠FAM,∴∠EAF=∠MAC,∴△AEF≌△AMC,∴EF=CM;(3)解:存在.如解图,作点A关于直线BC的对称点A',连接A'D,与直线BC交于点P,点P即为所求,连接PA,此时PA+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论