




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科生毕业设计(论文)题目:祁东煤矿2.4Mt/a新井设计煤与瓦斯突出煤层的开采技术摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为祁东煤矿2.4Mt/a新井设计。祁东煤矿位于安徽省宿州市境内,交通便利。井田走向(东西)长约9km,倾向(南北)长约3km,总面积为27km2。主采煤层为61、71煤,煤层倾角平均14°,平均总厚度为10m。井田地质条件较为简单。井田工业储量为313.16Mt,可采储量为238.10Mt。矿井设计生产能力为2.4Mt/a。矿井服务年限为70.8a,涌水量不大,矿井正常涌水量为437.06m3/h,最大涌水量为586.10m3/h。矿井瓦斯相对涌出量为20m3/t,绝对涌出量为20m3/min,为高瓦斯矿井。井田开拓方式为立井两水平上山开拓,二水平采用暗斜井延深。采用胶带输送机运煤,采用矿车进行辅助运输。矿井通风方式为两翼对角式通风。全矿采用采区准备方式,共划分为四个工作面,并进行了运煤、通风、运料、排矸、供电系统设计。针对61201工作面进行了采煤工艺设计。该工作面煤层平均厚度为7.0m,平均倾角15°。工作面采用综采放顶煤采煤法。采用双滚筒采煤机割煤,往返一次割两刀。采用“四六制”工作制度,截深0.8m,每天六个循环,循环进尺0.8m,月推进度144m。一般部分共包括10章:1、矿区概述与地质特征;2、井田境界和储量;3、矿井工作制度、设计生产能力及服务年限;4、井田开拓;5、采区巷道布置;6、采煤方法;7、井下运输;8、矿井提升;9、矿井通风与安全;10、设计矿井基本技术经济指标。专题部分题目是煤与瓦斯突出煤层的开采技术,主要是介绍了煤与瓦斯突出煤层的瓦斯抽放原理和卸压措施,全面阐述了煤与瓦斯突出煤层的瓦斯抽放、煤与瓦斯共采技术。翻译部分主要内容是关于澳大利亚两大地下开采方法——壁式、房柱式采煤法的介绍,英文题目为:GeologicalandgeotechnicalaspectsofundergroundcoalminingmethodswithinAustralia。关键词:立井;暗斜井延深;两水平;采区布置;两翼对角式通风;综合机械化放顶煤采煤方法
ABSTRACTThisdesignincludesthreeparts:thegeneralpart,thespecialsubjectpartandthetranslationpart.Thegeneralpartisabouta2.4Mt/anewdesignforQidongmine.QidongmineislocatedinSuzhouCity,Anhuiprovince.thetrafficisconvenient.Thelengthofthecoalfieldis9km,thewidthisabout3km,andthetotalareais27km2.The61&71isthemaincoalseamswithaveragedipof14°.Thethicknessofthemineisabout10minall.Thegeologicstructureofthiscoalfieldissimple.Therecoverablereservesofthecoalfieldare313.16milliontonsandtheminablereservesare238.10milliontons.Thedesignedproductivecapacityis2.4milliontonspercentyear,andtheservicelifeofthemineis70.8years.Thenormalflowofthemineis437.06m3perhourandthemaxflowofthemineis586.10m3perhour.Therelativeminegasgushis20m3/tandtheabsolutegushis20m3/min,soitisalowgasmine.Themineisaverticalshaftdevelopmentwithtwomininglevelsandtheextensionofblindinclinedshaft.Tecentrallanewayusesbeltconveyortotransitcoal,andtrolleywagonsareusedforaccessorialtransportationintheroadway.Theventilationmodeofthismineistwowingsofdiagonalventilation.Thedesignappliesdistrictpreparationagainstthesecondwesterndistrict,whichdividedintofourlongwallfacestotally,andconductedcoalconveyance,ventilation,gangueconveyanceandelectricitydesigning.Thedesignconductedcoalminingtechnologydesignagainstthe61201face.Thecoalseamaveragethicknessofthislongwallfaceis7.0mandtheaveragedipis15°,Thefaceappliesfully-mechanizedcoalcavingminingmethod,andusesdoubledrumshearercuttingcoalwhichcutsonceeachworkingcycle.“Four-Six”workingsystemhasbeenusedinthisdesignandthedepth-webis0.8mwithsixworkingcyclesperday,andtheadvanceofaworkingcycleis0.8m.Sotheadvanceis144mpermonth.Thisdesignincludestenchapters:1.Anoutlineoftheminefieldgeology;2.Boundaryandthereservesofmine;3.Theservicelifeandworkingsystemofmine;4.developmentengineeringofcoalfield;5.miningdistrictpreparation;6.Themethodusedincoalmining;7.Undergroundtransportationofthemine;8.Theliftingofthemine;9.Theventilationandthesafetyoperationofthemine;10.Thebasiceconomicandtechnicalnormsofthedesignedmine.Thetopicofspecialsubjectpartsisminingtechnologyofcoalandgasoutburst,describesthecoalandgasoutburstofgasdrainageprinciplesandreliefmeasures,acomprehensiveexpositionofthecoalandgasoutburst,gasdrainage,coalandgasextractiontechnology.TranslationpartisastudyonundergroundcoalminingmethodswithinAustralia.TheEnglishtitleis:GeologicalandgeotechnicalaspectsofundergroundcoalminingmethodswithinAustralia.Keywords:Verticalshaft;Blindinclinedshaft;Twolevels;Miningdistrictpreparation;Twowingsofdiagonalventilation;Fully-mechanizedcoalcavingmining第页英文原文GeologicalandgeotechnicalaspectsofundergroundcoalminingmethodswithinAustraliaB.Scott·P.G.Ranjtih·S.K.Choi·ManojKhandelwalAbstract:AboutonequarterofthecoalproducedinAustraliaisbyundergroundminingmethods.ThemostcommonlyusedundergroundcoalminingmethodsinAustraliaarelongwall,androomandpillar.Thispaperprovidesadetailedreviewofthetwomethods,includingtheiradvantagesanddisadvantages,themajorgeotechnicalandoperationalissues,andthefactorsthatneedtobeconsideredregardingtheirchoice,includingthevaryinggeologicalandgeotechnicalconditionssuitedtoaparticularmethod.Factorsandissuessuchascapitalcost,productivity,recovery,versatilityandminesafetyassociatedwiththetwomethodsarediscussedandcompared.Themajoradvantagesofthelongwallminingmethodincludeitssuitabilityforminingatgreaterdepth,higherrecovery,andhigherproductionratecomparedtoroomandpillar.Themaindisadvantagesoftheroomandpillarmethodarethehigherrisksofroofandpillarcollapse,highercapitalcostsincurredaswellaslowerrecoveryrate.Keywords:Longwall·Roomandpillar·Geological·GeotechnicalIntroduction:MininginAustraliaisasignificantprimaryindustryandcontributortotheeconomyofAustraliaandencouragedimmigrationtoAustralia.Manydifferentoresandmineralsareminedthroughoutthecountry.Withtheincreaseincoaldemandandgrowingawarenesstowardssustainabledevelopment,thecoalindustryhasdrawnaconsensusovertheneedforincreasedproductionfromundergroundcoalmines.Aroundtheworld,themajorityofcoalreservesarerecoverableusingundergroundminingtechniques.Atthemoment,almosttwo-thirdsofcoalproductioncomesfromundergroundmines,however,inAustraliathisstatisticissignificantlylower(ACA2006).CurrentlyinAustralia,themajorityofundergroundcoalminesarelocatedinNewSouthWalesandCentralandWesternQueensland,wherethinnerblackcoalseamssuittheundergroundminingmethods.Thereareanumberofdifferenttypesofaccessmodesforundergroundmining.Theseincludedrift,incline/declineandshaft,andcanbeusedinconjunctionwitheitherofthethreemodesforundergroundminingwithinAustralia.Driftisgenerallyusedwhenthecoaldepositisinsideofahill,andminingisundertakenbyenteringdirectlyintothehill(Ghose1984).Incline/declineiscreatedatthegroundlevelofavalley,whereanaditisconstructedandslopesdowntothecoal.Shaftisusedwithanelevator,whichstretchesfromthesurfacetothecoalseamunderground(Wilson1983).Themainaimofthepaperistoidentifyandcomparevarioustechniquesusedforcoalextractionsandtheselectionprocessofthosetechniquesforaparticularsitebasedongeological,geotechnicalandotherfactors.ThetwomajormethodsofundergroundminingwithinAustraliaandaroundtheworldareroomandpillarandlongwallmining,andthesetwomethodswillbediscussedindetailsbelow.CurrentstatesofAustralianundergroundandopen-cutcoalminingoperationsInordertogainanunderstandingofthecurrentstateofcoalminingoperationsinAustralia,abroadoverviewisgivenbeforemethodsuitabilityforcoalminesisdiscussed.InAustralia,opencutminingproducesthemostamountofcoalforbothexportandinternaluses.In2004forexample,81.5milliontonnesofcoalwasminedusingundergroundmethods,whilst296.3milliontonneswereobtainedusingmethodswithinanopencutsystem(UniversityofWollongong2006).Thisisofnosurpriseasnearlytwo-thirdsofalloperatingmineswithinAustraliaareopencut,ascanbeseenfromTable1andFig.1below.Table1TypeofminesoperatingwithinAustralia(GNSW2006;GSA2006;GWA2006;GT2006;GV2006;GQ2006)MinetypesbystateStateUndergroundSurfaceTotalcoalminesQueensland103040NewSouthWales272552WesternAustralia066Tasmania123Victoria178SouthAustralia011Total3971110Fig.1MapofAustraliancoalbasins(DPMC2006)WithinAustralia,browncoalistypicallyfoundinthesouthernpart,withblackcoalfoundinthebasinsofNewSouthWalesandQueensland.Beforeproceedingfurther,aquickoverviewofcoalrankandclassificationisgiven.Typically,coalrankisclassifiedintothreedistinctcategoriesdependingonthedegreeofmetamorphismthatthecoalformingmaterialhasenduredasitmaturesfrompeattoanthracite.Thesearelignite,sub-bituminousandbituminous,andthepropertiesofthesegreatlyinfluencethetypeofmethodusedtoexploitthecoal.Asmentioned,surfaceminingoropencastminingisthepredominantmethodusedinAustralia.OpencastminingonalargescalefirstcommencedinAustraliainthe1960s,whereimporteddraglineswerethemainmeansofstrippingoverburden.Thismethodcontinuedtobeusedoverthenext20–30years,andstilltoday,however,astheseamsbecamedeeperandthecomplexityofthecoalseamincreased,otherequipmentssuchastruckandshovel,anddozers,wereintroduced(Westcott2004).Today,draglinesandtruckandshoveloperations,oracombinationofthetwo,arethepredominantmodesofequipmentusedinopencastmines,asseeninFig.2below.Fig.2OpencastCoalMiningEquipmentusedinAustralia(Westcott2004)SelectionofexcavationmethodThedecisiononwhethertooperateanaboveorundergroundmineisheavilyinfluencedbyacoupleofimportantfactors.Themajorfactorindecidingonwhethertogoundergroundoropencutisthestrippingratio(Whittlesetal.2007).Thisisdefinedastheratioofthevolumeofoverburden(BCM)movedtotheamountofcoalproduced(tonnes).Asageneralrule,anythingpast20:1isconsideredtoolargearatioforabovegroundcoalminingaslargeamountsofoverburdenarerequiredtobemovedinordertoexposethecoalseam,thusundergroundmethodsshouldbeconsidered.Anotherfactorindecidingonthetechniquetobeemployedisthetypeofcoaltobemined.Ifthecoaldepositconsistsoflignite,whichisTertiaryinageandrangesfromabout15to50millionyearsold,thenabovegroundmethodsshouldbemorecloselyconsidered.Thisisduetothefactthatligniteisamuchsoftermaterialthanblackcoal,whichincreasesthepossibilityofroofcollapseormaterialcollapsingfromaboveduringminingduetotheyounger,unconsolidatedandsoftermaterialoverlayingthebrowncoal.Carefulconsideration,however,wouldalsoneedtobegiven,whenminingbrowncoalaboveground,asastrongbaseforthelarge,heavyequipmentwouldberequiredtoavoidbenchcollapseorotherfailure.Large,heavycoalhaulagetrucksmayalsofinditdifficulttooperateonthesofterlignite,especiallyduringwetweatherevents,wheretheweightoftheequipmentresultsinlargeamountsoftimelostduetotrucksbecomingbogged,wheelspin,etc.Otherfactorstobeconsidered,whichwillbeexpandeduponshortlyinclude:•Lifeofmine.Forexample,isitfeasibletooutlaylargecapitalforasmallcoaldeposit?•Requiredproductivity.Doyouneedahighproductionmachineorisitmorefeasibletomineconstantlyataslowerrate?•Amountofcapitalavailable.Ifthereisanyplantcurrentlyavailablewithinthecompany,andcanitbeutilised?Inthefollowingsectionsonlongwallandroomandpillarcoalmining,thetypicalgeologicalandminingconditionsforthetechniquestobeutilisedwillbediscussed,includingvariationsofthetechniques,aswellasexpectedproductivityandcostsexperiencedwithintheindustry.Thefollowingisapplicabletoeachproposedmethod(opencastorunderground):•Notwominesareexactlythesame.Geologicalprofiles,weather,capitalavailable,production,productivityrequirements,recoverablereserves,etc.areallindependentvariablesbetweendifferentmines,andassuch,itisimpossibletoprepareastandarddocument,whichcatersforeverypossiblemine(Bise1995).Largeamountsoftimearerequiredbyexperiencedengineersorspecialistconsultantsduringthepreliminaryandplanningstagesinordertodesignaminingmethodsuitedtoaparticularlocation.•Geotechnicalissuesareindependentateachlocation,andadetailedinvestigationattheveryleastshouldbeundertakeninordertounderstandthegroundconditions,geologicalprofile,etc.(Wilson1983).Thegeotechnicalissuesoutlinedwithinthispaperincludedifferentmodesoffailure,soilproperties,etc.however,itisnotwithinthescopeofthispapertodetaileverypossiblegeotechnicalissuewithregardstocoalmines.Majorproblemswillbeidentifiedalongwiththeconditionsthatcausesuchcircumstancestooccur.•Costingofmineequipmentandproductivityisofabroadnature,andcanbecalculatedusingthefollowingformulaproposedbyNoaksandLandz1993.Thecostin1992$Ahasbeenadjustedto2006valueusingtherecommendedformula:CostNow=(CostThen)×(CostIndexNow)/(CostIndexThen)where,thecostpriceindexes(CPI’s)forboth1992(CPI,March1992:107.1,opencut;108.1,underground)and2006(CPI,June2006:167.0,opencut;152.0,underground)havebeenobtainedfromtheAustralianBureauofStatistics(ABS2006).•Allvaluesandproductivityaregeneratedasapreliminaryestimateforapre-feasibilitystudylevelofaccuracy(±25%),anddoesnotreplaceanengineeredcostestimateorfeasibilitystudy.Theaccuracyofanyestimatewillbedirectlyproportionaltothequalityandquantityofdataavailableandtothetimeandeffortputintoitspreparationandproperexecution(NoaksandLandz1993).Thefollowingsectionsoutlinethetwoundergroundcoalminingalternatives(longwall,androomandpillarmining)specifyingwhichgeologicalconditionsarebettersuitedtoeachmethod,aswellasgeotechnicalissuesinvolved.LongwallminingLongwallminingisthemostcommonoftheundergroundcoalminingmethodsusedinAustralia.Itsuitssiteswherecoalseamsarethicker,wideandhaveaconsistentcoalprofilewithgentledip.Inlongwallmining,largerectangularsectionsofcoalareidentifiedandremovedinonecontinuousoperation(Truemanetal.2009).Basically,apanel,orblock,ofcoaliscreatedbydrivingasetofheadingsintothesectionofcoal(panel)foracertaindistance(typically1.5–3kmlong).Thesesetsofheadingsaregenerallyspacedatadistanceofapproximately100–250m(330–820ft)apart,andarejoinedtogethertoallowthelongwallminingmachinetoworkalongthelongwallface.Themechanisedshearerrunsalongtheface,cuttingandremovingthecoalasthemineadvancesalongthelengthoftheheadings.Asthecoalisbeingcutanddroppedontoachainconveyor,temporaryhydraulic-poweredroofsupportsautomaticallyfollowthedirectionoftheshearertoholduptheroofwhilethecoalisbeingextracted.Thesesupportsprovideasafeworkingenvironment,andasthemineadvances,sodothesupportjacks,andtheroofareabehindthefaceisallowedtosafelycollapse,forminganareaknownasthegoaf.Inthemainroadwayswithinthemine,forusebyminepersonnel,transportationofmaintenanceequipment,etc.roofboltsareplacedintheceilingtoavoidcollapse.Oncetheshearerhascompletedextractingthecoalfromthepanel,itismovedtoanewlocation,andrepeatstheprocess.Thismethodofminingismoreefficientthantheroomandpillarmethod,withrecoveryratesaveragingapproximately75%.However,theequipmentismoreexpensiveandcannotbeusedinallgroundconditions.Theseissues,amongothers,willbediscussedfurtherbelow.Asmentionedatthebeginningofthissection,longwallminingisthepredominantundergroundmethodofextractingcoalwithinAustralia,withapproximately70%ofundergroundcoalminesutilisingthetechnique,allofwhichareineitherNewSouthWalesorQueensland.Themethodaccountsfor89%ofAustralia’stotalundergroundcoalproduction(UniversityofWollongong2006).ItisarelativelyrecentintroductioninAustralia,withthefirstlongwallminebeingdevelopedin1963,however,therearecurrently27inoperationincludingtheBeltana,MetropolitanandNewstancoalminesinNewSouthWales,andtheCrinium,Kestrel,OakyNorthandNewlandsSouthernmineswithinQueensland.Kelly(1999)identifiedthefactthatshearfailure,ratherthantensile,isthemajorfailuremechanisminanumberofAustralianlongwallminesmonitoredbytheCSIROsince1994.Thefailurehasoccurredfurtheraheadoftheretreatingfacethantraditionalgeo-mechanicstheorypredictsandisconsiderablyaffectedbythegeologicalconditionsofthesite.Otherfactorsinfluencingfailureincludegoafingmechanicsofpreviousblockandporewaterpressure.Hebblewhite(2003)introducedtheconceptofcoregeotechnicalrisksassociatedwithlongwallmining,thatis:‘‘anyriskassociatedwithamajorhazardorpotentialhazardthatisaninherentfeatureofagenericminingmethod.Almostbydefinition,coreriskscannotbetotallyeliminated,andmustthereforebecontrolledandmanagedduringthelifeoftheminingmethodorsystemofwork’’.Thepaperidentifiedsomemajorcoregeotechnicalrisksassociatedwithlongwallmining,andcanbeseeninTable2.Table2CoregeotechnicalrisksassociatedwithlongwallminingHazardConsequenceSurfacesubsidenceDisturbance/damagetosurfacefeatures(naturalandman-made),andtosub-surface,suchasaquifers.Faceinstability/periodicweightingLossofface/roofcontrol;productiondisruption;equipmentdamage;operatorsafetythreatenedCavinghangupWindblasts(rangeofconsequentsafetyimplications);excessivepillarandfaceloading;unpredictablesubsidenceStructuralgeologydisruptiontopanelblocksProductiondisruptionandpotentialsterilisationofreservesleadingtomajoreconomicimpact;adversefacegroundconditionsAbutmentstressesondevelopmentAdverseconditions/potentialfailureingateroadsandchainpillarsRisksidentifiedwithinTable2suchassurfacesubsidenceareinevitableandwilloccuronalmostalllongwallminesites,andmustbemanagedeffectively,whilstotherssuchascavinghangupcausingair/windblastsareavoidableifappropriateplanningisundertakenandprecautionsfollowed.Certainly,thegeotechnicalsuitability,issuesandrisksmentionedhereinarenotinanywaythesoleelementstoconsiderwhenplanning,developingoroperatinglongwallmines.Itissimplyanidentificationanddescriptionofmajorfactorsinvolvedwithinthelongwallminingprocess.Otherissuesandbusinessconsiderationsfollowing,relevanttospecificsites,shouldalsobetakenintoaccountwhenconsideringcoalminingmethods.OtherissuesandconsiderationsTheprevioussectiondescribesgeotechnicalconsiderationsrelevanttolongwallmining.Thefollowingsectionwillconsiderotherissueswhichmayariseduringlongwalloperationsincludingsafety,production,productivity,equipmentsize,make,etc.andoptionsforminelayout.Aseachsiteisindependentofanother,itisdifficulttorecommendcertain‘templates’forselectingtheminingmethod,however,itistheaimofthissectiontodiscusswhatoptionsareavailableandunderwhatconditionstheyarebestsuitedfor,aswellascommonissuesarisingduringtheapplicationofaparticularmethod.Theimportanceofproductivityinallminingcannotbeoverlooked,andthemainincreasesovertheyearshavegenerallycomefromadvancementsintechnology.Oneofthekeyfactorsoverthepast20yearsinmakinglongwallproductivitygainshasbeentheevolutionoflargerlongwallpanels,madepossiblebytechnologyadvancements,upwardsof3,350minlengthby320mwideasopposedtotypicallengthsandwidthsinthemid-1980sof1,525and180m,respectively(KvitkovichandWeisdack2005).Itisexpectedthatlongwalltechnologywillcontinuetoimproveforanumberofyears,thusprovidinggreateroptionsforlongwallunitselection,whichultimatelyhasagreatinfluenceonproductivity(PengandChiang1984).In1992forinstance,longwallequipmentwasverydiverseinsizeandcapacity,asitstillistoday,withshearerpowerrangingfrom150to1,080kW,andfaceconveyorcapacityrunningbetween940and2,600tonnes/h.Thesestatisticsdemonstratethevariousoptionsavailablewhenpurchasinglongwallequipment,whichwillultimatelyhavealargeinfluenceonthecostsandexpectedproductivityofaproject.TasmanAsiaPacific(Anon1998)conductedananalysisonlongwallminingin1998bycomparingbestpracticeperforminglongwallminesintheUSAwithanumberoflongwallminesoperatingwithinAustralia.ThisanalysisconcludedthattheaverageproductivityoftheAustralianmineswasapproximately25%lessthanthatoftheUSAmines.Theanalysiswaslimitedtothecoreminingoperationsoflongwalls(shearing,roofsupport,transportationofthecoal,labourandmaintenance)andtherefore,becausetheoperatingcharacteristicsofthemineswerefairlysimilar,estimatedproductivitygapslikelyindicateddifferencesinmanagementandworkpractices.Theresultsfromthisreportindicateareaswhichtypicallyaffectproductivityinlongwallmines.ThereportidentifiedthemajordifferencesbetweentheAustralianandUSAlongwallminesas:•higher‘non-production’timesduringshiftchangeoverwithinAustralianlongwallmines,•lowerutilisationofshearerswithinAustralianlongwallmines,andgeologicaldifferences.Theseresultsindicatekeyareaswhich,iffocuseduponandmanagedappropriately,caninfluenceproductivitylevelswithinlongwallmines.AscanbeseenfromFig.3,Australianmineshadmuchmore‘‘non-production’’,or‘‘joiningandleaving’’,timethantheUSAmines.Itwasnotedthatthe‘‘distancetravelledbyemployeesfromsurfaceaccesspointtominefacewasverysimilarbetweentheaverageparticipatingUnitedStatesandAustralianmines.So,largedifferenceinjoiningandleavingtimecannotbeexplainedbytraveltime’’(Anon1998).Itwassuggestedthatthemaincauseofthisdifferencewaseitherdifferentworkpracticeoremployeetransportationsystem.Thedifferenceinthese‘‘non-production’’timesresultedin40minutesextraproductivitypershiftfortheUSAmines,provingthatwhatmayseemasmalloralmostinsignificantfactorcanhavealargebearingontheoverallsuccessfulnessofalongwallmine.Fig.3‘Non-production’timeinshiftsatlongwallmines(%oftotalshifttime)(Anon1998)Anothermajordifference(seeFig.4)statedfromthereportwasalowerutilisationofshearersinAustralianlongwallmines.Fig.4Utilisationandavailabilityofshearers(Anon1998)Thisutilisationdifferencewasmainlyattributedtomineplanning,andagaindemonstratesamajorissuetoconsiderinordertomaximisetheproductionofalongwallmine.Thesemajorfactorsmentioned,obviouslyalongwithsomeotherminorfactors,identifyissuestoconsiderwhendevelopingoroperatinglongwallmines.Thisofcoursedoesnotincludeindividualgeologicalconditionsorequipmentselection.Figure5showswhateffecttheseissuescanhaveoncostpertonneiftheyarenotmanagedproperly.Fig.5Totalfactorproductivityandcostpertonneforlongwallmines(index,USAcoal=100,cost$A)(Anon1998)Whencomparinglongwallminingtotheothermajorundergroundmethod,roomandpillar,itisinterestingtonotethat,atleastintheUSA,higherlabourproductivitylevelsareobtainedutilisingthelongwallmethod(Darmstadter1997).Thisisduetoanumberoffactors.First,longwallminingismuchlesslabourintensivethanroomandpillarmining,whichislargelyduetothefactthatthelongwalloperationisofahighlymechanisednature,wherethereisasignificantdegreeofcomputerisationandcontinuityintheextractionprocess.Thisminimallabourintensivefactoralsohasasecondaddedbonus,thatis,superiorsafetyperformanceisgenerallyachievedduetolesspersonnelatthecuttingface.Secondly,longwallminingutilisesacontinuouslyhaulingconveyorsystem,whereastheroomandpillarmethodemploysasomewhatmorelabourintensiveshuttlecarsysteminconjunctionwithcontinuousminers.Thischaracteristicisanimportantaspectofundergroundminingtechniquestoconsider,particularlywhenonelooksattheoutcomeofa1995studyintheUSAcomparingtheratiooflongwalltoroomandpillarlabourproductivitylevelsthroughoutvariousstatesandregions,asshowninTable3below.Table3Ratiooflongwalltoroomandpillarlabourproductivitylevels,selectedstatesandregions1983–1993(Darmstadter1997)19831993Alabama1.061.33EastKentucky0.851.35Pennsylvania0.911.62Virginia0.731.01WestVirginia1.140.97Illinois1.251.12WestKentucky-0.75Colorado0.841.54Appalachia0.981.10IllinoisBasin1.191.00West1.111.51US0.981.19Source:EIA1995b,pp.39–40(WestKentuckyhadnolongwallproductionin1983)Asshownfromthis,anoverallratioofalmost1.2infavouroflongwallminingsuggeststhismethodwillgenerallyobtainhigherlabourproductivitylevelsasopposedtoroomandpillar.RoomandpillarminingConventionalroomandpillarminingwasthetraditionaltechniqueusedduringundergroundminingupuntilapproximately40yearsago,whencontinuousminingwasintroducedintoAustralia.Thisnewformofroomandpillarminingeliminatedtheneedfordrillingandblasting,andwasamuchmoreefficientprocess,andassuch,practicallyreplacedtheconventionalroomandpillarmethod.Althoughcontinuousroomandpillarminingisthemostcommontypeofundergroundminingintheworld,itplayssecondfiddletothemoreeconomiclongwallmininginAustralia,withapproximatelytwiceasmanyundergroundminesutilizingthismethodasopposedtoroomandpillar(ABS2006).Incontinuousroomandpillarmining,coalseamsareminedbyacontinuousminer,whichisanelectricmachinethatbreaksthecoalmechanically.Itsmaincomponentisalongrotatingdrumwhichhassharppicksattachedaroundtheoutside,andallowsthemachinetocutandloadthecoalatthesametime.Thecoalisthenloadedontoshuttlecarsand/orconveyorbeltswhereitistransportedtothesurface.Thecontinuousminerworksinsuchawaythatitcutsaseriesof‘rooms’intothecoalseam,andleaves‘pillars’madeupofcoal(roofboltsarealsoaddedlater)tosupporttheroofofthemineasthemachineadvances,hencethename‘roomandpillar’.Asthecontinuousminermovesdeeperintothecoalseam,eachroomrequiresapillarofgreaterwidthtomaintainthesupportofthemine.Carefulplanningisnecessaryduringthisstageofminingtoensurepillarsofsufficientstrengtharedesignedtosu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度快餐外卖平台店铺租赁与运营管理合同
- 二零二五年度个人房屋装修贷款融资服务合同
- 二零二五年度智能化资产抵押合同协议书含数据共享条款
- 2025年精准备考试题及答案一览
- 2025年度附生效条件赠与知识产权合同
- 2025年度金融科技公司首席技术官聘用协议书
- 二零二五年度体育赛事合同管理制度与执行规范
- 2025年度环保产业用地土地使用权互换合同
- 职业素养与茶艺师考试试题及答案
- 二零二五年度个人技术合作协议书:智能翻译技术合作开发合同
- LY/T 2518-2015喷雾防治林业有害生物技术规程
- GB/T 23119-2017家用和类似用途电器性能测试用水
- GB/T 2007.7-1987散装矿产品取样、制样通则粒度测定方法手工筛分法
- GB/T 20001.6-2017标准编写规则第6部分:规程标准
- GB/T 12970.2-2009电工软铜绞线第2部分:软铜绞线
- 涂布调试技能等级考核笔试试题(O4-O5)附答案
- GCP原则及相关法律法规课件
- (赛课课件)人教部编版二年级语文《看图写话写事:乐于助人-》
- 液化天然气(LNG)相关的知识培训
- 高空作业车安全技术交底
- 消防管道水压试验记录
评论
0/150
提交评论