DNV:电池储能设施场地的风险评估报告(英)_第1页
DNV:电池储能设施场地的风险评估报告(英)_第2页
DNV:电池储能设施场地的风险评估报告(英)_第3页
DNV:电池储能设施场地的风险评估报告(英)_第4页
DNV:电池储能设施场地的风险评估报告(英)_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DNV

WHENTRUSTMATTERS

RISKASSESSMENTOFBATTERYENERGY

STORAGEFACILITYSITES

Mainauthors:

MarisaPierce

VijayRaghunathan

Editors:

StephenJonesCarolLiffman

CarrieKaplan

MichaelKleinberg

WHITEPAPER

Riskassessmentofbatteryenergystoragefacilitysites

-2-

CONTENTS

Executivesummary03

1.Definingriskintheenergystorageindustry10

1.1Currentenergystorageindustrypositioning11

1.1.1Industrialsectorcomparison12

1.1.2Vehiclecomparison13

1.2Theconceptof'risk'13

1.3Identifyingandmanagingrisk14

1.3.1Step1:Hazardidentification14

1.3.2Step2:Consequenceanalysis14

1.3.3Step3:Frequencyanalysis14

1.3.4Riskassessmentandmitigation15

2.Li-ionbatteryfailureriskandmitigation17

2.1Commonfailurescenariosofli-ionbatteries18

2.2Consequenceanalysis19

2.2.1Toxicimpacts19

2.2.2Fireradiation20

2.2.3Flammability20

2.2.4Overpressureimpacts20

2.3Frequencyanalysis21

2.4Riskassessment22

2.5Safeguardsandbestpractices24

2.6Layersofprotection27

3.Conclusions30

4.References32

Riskassessmentofbatteryenergystoragefacilitysites

-3-

LISTOFFIGURES

Figure1-1Deathsperunitofelectricityproductionbyenergysource[4]12

Figure1-2Genericriskmatrix13

Figure1-3Riskassessmentprogression14

Figure1-4Sampleriskmatrixexercise15

Figure2-1Comparisonofcommonriskscenarios27

Figure2-2Bowtieoverview28

Figure2-3Simplifiedthreadpathwayportionofthebowtie(leftsideofFigure2-2)28

Figure2-4Simplifiedconsequencepathwayportionofbowtie(rightsideofFigure2-2)29

Figure3-1ComparisonofriskofBESSwithoutsafeguardsinplace(A)andwithsafeguardsinplace(B)31

LISTOFTABLES

Table2-1CommonLi-ionbatteryfailuresandsafeguards18

Table2-2MaximumdownwinddistanceofCOat8.5feetheightreleasepoint(feetfromsource)19

Table2-3Firehazards-radiationlevelsat3.3feetheightabovegroundlevel(feetfromsource)20

Table2-4LFLat8.5feetheightabovegroundlevel(feetfromsource)20

Table2-5Commonfailurecausesandfrequencyoffailure(CCPS,Ref.[22])21

Table2-6ComparisonofexamplescenariolikelihoodoffatalitywithUKHSEriskcriteria

(withoutsafeguards)24

Table2-7Commonsafeguardsandprobabilityoffailureondemand24

Table2-8ComparisonofexamplescenariolikelihoodoffatalitywithUKHSEriskcriteria

(withsafeguards)26

Table2-9Safeguardorbarriereffectivenesscategories27

EXECUTIVESUMMARY

3

Riskassessmentofbatteryenergystoragefacilitysites

EXECUTIVESUMMARY

Assessingriskforbatteryenergystoragesystems

Interestinenergystoragehassurgedinrecentyears.

AstheworldimplementstheParisAgreement(fromthe

UnitedNationsClimateChangeConference(COP21)heldinParis,Francein2015),utilitiesandenergyprovidersmustcontinuetoreduceemissionssafelyandequitably.BatteryEnergyStorageSystems1(BESS)havegrowninpopularitybecauseoftheirnumerousbenefitstoelectricutilitiesandtheircustomers.

BESSstorelargeamountsofenergygeneratedby

renewable(typicallysolarandwind)andotherpower

generationtechnologies,allowingincreasingrenewable

energygenerationandcostsavingsovertime.Lithium-ion(Li-ion)batteriesrevolutionizedhowwepowerconsumer

productssuchasportableelectronicsandelectricvehicles.BESShelpmanageinstantaneoussupplyanddemandon

thepowersystem,replacefossil-fuel-poweredpeakerplants(whichoperateinfrequently,onlyduringpeaksystem

demand),andserveasbackuppowersourcesintheeventofequipmentfailures.

FailuresofbatterieswithinBESSarerare.

FailurecausesforLi-ionbatteriesincludeelectricalfailures,mechanicalfailure,extremeenvironment,thermalfailure,andhumanerror.

Aswithothertechnologies,BESSincludeapplicationsandrisksthatmeritthoughtfulconsideration.Li-ionbatteries

commonlydeployedinBESScontainmaterialsthatcanburnorexplodewhenoverheatedorotherwiseabused,anda

seriesoffires(particularlyfromconsumerproducts)haveincreasedconcernsoverthesafetyandefficacyofthesesystems.

Untilrecently,publiclyavailabledataonbatteryincidents

waslimited.DNV,however,conductednumerousstudiestounderstandbetterhowLi-ionbatteriesfailandwhich

safeguardsandbestpracticesreducethelikelihoodofincidentsandtheseverityofconsequences.

1Batteryenergystoragesystemsaresometimesconfusedwith,forexample,awarehouseinwhichbatterieswouldbestored.Thispaperdiscussessystemsthatstoreelectricity,oftenusingbatteries.

-5-

Riskassessmentofbatteryenergystoragefacilitysites

-6-

DNVconducteddestructivetestingonhundredsofbatterycellswithcapacitiesrangingfrom2Amp-hours(Ah)to

300Ahfrom20differentmanufacturers,aswellasdozensofmedium-andlarge-scaletestsandnumerousfireandfailureinvestigations.Destructivetestingisatypeoftesting

methodologywheretheprimarygoalistointentionallydamageordestroyacomponent,material,orproductto

evaluateitsperformance,durability,andfailurecharacteristicsunderextremeconditions.InLi-ionbatterytesting,

destructivetestinginvolvessubjectingthecellstoconditions

suchasovercharging,over-discharging,short-circuiting,

mechanicalabuse,andextremetemperatures.Thesetestshelpusunderstandbatterybehaviorduringfiresandotherfailureconditions.Thedataderivedismeanttoguide

manufacturers,systemdesigners,safetyexperts,and

permittingauthoritiesindeterminingthenecessaryfireandexplosionprotectionforaBESSfacility.

Further,weevaluateddatafromtheoilandgas,utility,and

petrochemicalindustrieswhenassessingscenarioswhen

BESSandotherfacilitiesoperateoutsideintendedconditions(potentiallyleadingtofires).DNVusesthesesourcesand

statisticalanalysisandriskassessmenttoolstoestimatetheriskofcatastrophicbatteryfailures,includingtoxicgas

releases,fires,andexplosions.However,wedidnotanalyzefailuresordeterminefailureratesbasedonknownbattery

failureincidents.Instead,weofferaquantitativeassessmentofthelikelihoodofBESSfailureandtheimpactonworkersandthegeneralpublicwithandwithoutsafeguards.WealsocomparedtheBESSsectorwithotherindustriesand

applicationsfamiliartothepublictodeepentheconversationofbatteryBESSsafetyacrossindustries.

ThefollowingareDNV’sfindingsinresponsetocommonlyaskedquestions.

?WhyareLi-ionbatteriesbecomingsopopular?

Amongvariousenergystorageoptions,Li-ionbatteriesstandoutbecauseoftheirhighenergydensityanddecreasingcosts.

Despiteincidentsleadingtoscrutiny,Li-ionbatteriescontinuetobefavoredfortheirversatilityinapplicationsrangingfrompersonalelectronicstoelectricvehiclestostationaryBESS,whichservetobalancesupplyanddemandontheelectricpowersystem.

Variouscountries,especiallytheUnitedStates,activelypursuestrategiestoenhanceenergystoragedeployment.Theseincludeaddressingcostcompetitiveness,regulatoryframeworks,andindustryacceptance,withstateslikeCalifornia,Texas,andNewYorkleadinginBESSdeployment.

?WhyandhowoftendoLi-ionbatteriesinBESSfail?

FailuresofbatterieswithinBESSarerare.FailurecausesforLi-ionbatteriesincludeelectricalfailures(e.g.,batterymanagementsystemfailurethatresultsinover-chargingorover-dischargingthebattery),mechanicalfailure(e.g.,defectivematerialsusedinmanufacturing),extremeenvironment(e.g.,batteryexposedtohighertemperaturesthanitisdesignedfor),thermalfailure

(e.g.,coolingsystemfailure),andhumanerror(e.g.,improperinstallation).Typesoffailuresalsovary–failurecouldmeanthebatterylosessomeofitsabilitytostoreenergy,couldmeanthebatterystopsworking,orcouldmeanthebatterycatchesfire.Thisreport

focusesonrisksrelatedtoLi-ionbatteryfires.

Estimatingthelikelihoodoffailurerequiresadualapproachusingqualitativeandquantitativemeans.Qualitativeanalysisrelieson

theexpertiseofsubjectmatterexperts.Incontrast,quantitativeanalysisutilizeshistoricalreliabilitydataorincidentdatabasesto

determineprecisefailurerates.DNVuseddatabasesfromvariousindustries,suchasnuclear,utility,oilandgas,andpetrochemical

sectors,andstatisticaltoolstoestimatefailurelikelihoodsquantitatively.TheresultingordersofmagnitudeoftheseBESScomponentfailureratesareoncein10yearstooncein100years.Itshouldbenotedthatthesearefailureratesoftheequipmentandnotinjuryorfatalityratesassociatedwiththefailures.

Riskassessmentofbatteryenergystoragefacilitysites

-7-

?WhataretheconsequencesandseverityofLi-ionbatteryfailures?

Consequenceanalysisevaluatesfailurescenarios’severity,employingqualitativeexpertiseandquantitativemodelingtools.

Byusingdatafromourbatteryfiretestsanddatafrombatterycellmanufacturers,weassessedthetoxic,flammability,andthermal

impactsofLi-ionBESSfailuresonsurroundingcommunities.Ourmodellingincludedthefollowinggases:hydrogen(H2),carbon

monoxide(CO),carbondioxide(CO2),methane,andotherhydrocarbonsinlowerconcentrations(ethane,ethene,andpropane).

DNVmodeledanexampleBESSsitecontaining40cabinetsof2megawatt-hours(MWh)eachthatcanstore/discharge80MWhofelectricalenergy.Ourmodellingindicatedthatnoimpactcapableofcausingafatalityorseverepropertydamageoccurredmore

thanabout50feetfromthecenteroftheBESScabinets.Ouranalysisincludedrelevantatmosphericconditionsfortheexamplesite.

?Whataretherisks?

Riskisafunctionoftwocomponents:likelihood(alsoreferredtoasprobabilityorfrequency)oftheeventoccurringandseverity(alsoreferredtoasimpact).Asillustratedintheequationbelow:

Risk=LikelihoodxSeverity

AcommonmetricusedtoreportriskinthehydrocarbonindustryiscalledIndividualRisk,definedastherisktoapersoninthe

vicinityofahazardintermsofthenatureoftheinjury,thelikelihoodofinjury,andthetimeperiodoverwhichitoccurs.Anexampleofhowitiscommonlyreportedis“oneinjury/fatalityevery10,000years.”DNVmodeledtherisktobothworkersandthegeneral

public.BasedonourestimatesforthesampleBESSfacility,factoringinstandardsafetymeasures,thereisanestimatedriskofone

workerfatalityoccurringevery100,000years(equivalentto10-5fatalitiesperyear)andonefatalityinvolvingamemberofthepublicevery1,000,000years(equivalentto10-6fatalitiesperyear).TheUnitedKingdomHealthandSafetyExecutive(UKHSE)has

establishedcriteriafor“broadlyacceptablerisk”forbothworkersandmembersofthepublicforscenariosthatleadtoafatalitynomorethanonceinamillionyears.Scenarioswithfatalitiesareconsidered“tolerable”risksforworkersiftheyoccurnomorethan

oncein1,000yearsand“acceptable”forthepublicifthescenariosoccurnomorethanoncein10,000years.Perthesecriteria,theriskfromtheBESSexamplesitewemodelledisbroadlyacceptableforthepublicandtolerableforworkers.Also,whencomparingtheriskofBESSfailureswithinthecontextofeventsthatsocietyisalreadycomfortablewith,therisksarelow.

Commonrisksinperspective

Riskiestindustry

(transportation&warehousing)

1in1,000

1in10,000

1in100,000

1in1,000,000

1in10,000,000

Solorockclimbing(5hrs.perweek)HeartdiseaseSmoking

Accidentathome

Trafficaccident(driving10hrs.perweek)

Li-ionBESSsite

Fatallightning

strike

Riskassessmentofbatteryenergystoragefacilitysites

-8-

?HowcantherisksofLi-ionbatteriesbemitigated?

Whenrisksaretolerableorworse,itisbestpracticetoidentifyandinstalladditionalsafeguardstoreducetheriskfurther.

SafeguardsincorporatedintoBESSlessenthelikelihoodandseverityofbatteryfailureevents.Examplesofcommonindustry-

standardsafeguardsthatDNVconsideredinthisstudyincludeheatingventilationandairconditioningunits(HVAC)whichcontrolthetemperatureandhumidityinbatterycabinets,batterymanagementsystems(BMS),fusesandcircuitbreakers,andactivefire

suppression.TheNationalFireProtectionAssociation(NFPA)listsotherfireprotectionrequirementssuchasexplosioncontrolandseparationdistancesfromthepublic.Safeguardsthatbothpreventfailuresandmitigatetheseverityoffailurescanberepresentedinbowtievisualizations2,asimplifiedexampleofwhichisshownbelow.Inabowtievisualization,foranidentifiedhazardandevent(forexample“aBESSfacilitycatchesfire”),thevisualizationidentifiesthreatsontheleftandconsequencesontheright.

Barrierswhichpreventthreatsfromcausingtheeventareshownontheleft,andbarriersthatreducetheimpactoftheevent,ifitdoesoccurdespitethepreventivemeasures,areshowntotherightofthebowtie.Managingthehealthofbarriersiscriticalforensuringtheirperformanceintheeventofanemergency.

Bowtieoverview

Hazard

Lossof

containment

event

Mitigative

controlmeasures

orbarriers

Preventcontrol

measuresor

barriers

Consequence

Threat

?HowdoBESSfailureriskscomparetootherindustries?

TheriskofBESSfailureiscomparabletoorevenlowerthantherisksassociatedwitheverydayactivitiessuchasdrivingorbeing

apassengerinacar.Forexample,workingatorlivingnearaBESSislessriskythanbeinginacarorworkinginindustriessuchas

agriculture/forestry/fishing/huntingortransportation/warehousingwhenconsideringthefatalityrate(numberofannualfatalities

per100,000workers).In2023,therewereapproximately1,000fatalitiesrelatedtocarandlighttruckcrashesintheUnitedStates[1].

Withapproximately243milliondrivers[2],theratewas17fatalitiesper100,000driversperyear(thoughcrasheskilldrivers,

passengers,occupantsofothercars,andthoseoutsidecarssuchaspedestriansandbicyclists)or12fatalitiesper100,000

populationperyear.Forevery100,000workersintheUSin2022,therewere19fatalitiesintheagriculture/forestry/fishingandhuntingindustry(417totalfatalities)and14fatalitiesinthetransportationandwarehousingindustry(1,053totalfatalities)[3].

WhilethefatalityratepernumberofworkersisunknownforBESSsites,itispossibletoestimatethefatalityrateperyearandperunitofpowergenerationandcompareitwiththefatalityratesofotherindustries.Withinthepowergenerationsector,thefatalityrateperunitofenergy(orterawatthours)forBESSsitesisconsiderablylowerperunitofelectricityproductioncomparedtoothersources

suchascoal,oil,ornaturalgas(seefigureonpage9).ThefatalityrateperyearisdiscussedinmoredetailinSection1.1.

2Thename“bowtie”isusedbecauseacompletedvisualizationoftenlookslikeabowtie.

Riskassessmentofbatteryenergystoragefacilitysites

-9-

Deathsperunityofelectricityproductionbyenergysource[4]

30

DeathsperTerawatthourelectricity

25

20

15

10

5

0

25

18

4.6

2.8

1.3

Coal

Oil

Biomass

Gas

0.07

HydropowerLi-ionbatteryenergystorage

0.04Wind

0.03

Nuclear

0.02Solar

Energysector

*ThefatalityratefordriversintheU.S.isbasedonthenumberoffatalitiesreportedbytheU.S.NationalHighwayandTrafficSafetyAdministrationfortheyear2023pernumberoflicenseddriversintheU.S.in2023whichwasestimatedtobe243.35milliondriverspertheConsumerAffairsJournalofPublicResearch[2].

?HowdoBESSfacilitiesremainsafe?

ToensureBESSremainsatanacceptablerisklevel,itsownersandoperatorsshouldfollowdesignstandardsandbestpractices,regularlymaintainthesystem’sequipment(aswellassafetysystemsandrelatedequipment),trainpersonnel,andcommunicatewithlocalemergencyrespondersonthestoragesystem’shazards.

1

DEFININGRISKINTHE

ENERGYSTORAGEINDUSTRY

11

12

13

13

14

14

14

14

15

1.1Currentenergystorageindustrypositioning

1.1.1Industrialsectorcomparison

1.1.2Vehiclecomparison

1.2Theconceptof'risk'

1.3Identifyingandmanagingrisk

1.3.1Step1:Hazardidentification

1.3.2Step2:Consequenceanalysis

1.3.3Step3:Frequencyanalysis

1.3.4Riskassessmentandmitigation

3

Riskassessmentofbatteryenergystoragefacilitysites

1.DEFININGRISKINTHEENERGYSTORAGEINDUSTRY

Thefollowingsectionsdescribetheenergystoragemarketandintroduceriskasacombinationofhowsevereanincidentisandhowlikelyitistooccur.

US.However,ofthosevalues,intheUSandabroad,

approximately96%ofthecapacityisrepresentedbylarge

pumpedhydrostorage.Whileelectrochemicalbatteries

representnearly57%oftheprojectsinstalled,theycontributejust1,800MWtoworldwidecapacityand787MWtoUS

capacity.Ofthissubsection,Li-ionchemistriesaccountfor77%(1,390MW)ofinstallationsworldwideandnearly85%(667MW)ofUSelectrochemicalinstallations[8].

Assuch,BESSusingLi-ionbatteriesisthefocusofthispaper.Li-ionbatteries’high-energydensityanddecreasingcosts

supporttheiruseinapplicationsrangingfromportable

personalelectronicstotransportationtoutility-scalecapacitysupportandbeyond.IncidentswithLi-ionbatteriesoverthelasttenyears,includingtheBoeing787Dreamlinerfiresin2013[9],theUnionPacifictraincarexplosionin2017[10]

and,morerecently,utility-scaleBESSfires[11],anddozensofe-bikefiresinNewYorkCity[12][13][14][15],haveled

toscrutinyofLi-ionbatteries.Itisclearthataquantitative

assessmentofrisk,bothforthelikelihoodandtheimpactoffailure,iscriticaltoprovidesufficientmitigationmeasures.

Whiletheseandsimilarhigh-profilefailureshavereceivedmediaattention,reputablemanufacturersclaimhundredsofthousandsandevenmillionsofhoursofoperationwithnosignificantfailures.

ThetotalnumberofdeployedBESSandtheirfailureratesarebeingtrackedinincidentdatabases.Thesedatabases,alongwiththeresultsofbatteryburntests,recordedreliabilitydataforanalogoussystems,consequencemodellingandsome

statisticalanalysis,makeitpossibletoestimatetherisksofBESS.

1.1Currentenergystorageindustrypositioning

Batteryenergystoragesystemsareanincreasinglyattractiveoptionforutilityoperatorsandenergyproviderstoimprovethereliabilityandefficiencyoftheelectricgridwhile

reducingemissions.Variouscountries,includingtheUnitedStates(US),haveestablishedstrategiestoincreasetheuseof

energystoragebyaddressingcostcompetitiveness,

performanceandsafety,marketandpricingregulations,andindustryacceptance[5].IndividualUSstateshaveadopted

renewableportfoliostandards(RPS)andzeronetemissions

standards.TheyalsohavedevelopedincentiveprogramsthatsupporttheincreasedBESSdeploymentsofenergystoragegoals.Thirty-ninestateshaveanRPSorvoluntaryclean

energygoals,and19statesandWashington,D.C.passed

legislationtogroworexpandtheirrenewableorcleanenergytargets.Californiaisaleaderinthisspacewithover6,600MWofinstalledBESSenergystoragecapacity[6].Manystates

areexpandingtheirgoals.Forexample,NewYorkaimsfor

atargetof1,500MWofstorageforthestateby2025and

3,000MWby2030,withinthecontextofanoverall6,000MWenergystorageroadmap[7].TexasisanotherleaderinBESSinstallations.

Theenergystoragemarketoffersvariousoptions,including

pumpedhydro,compressed-airenergystorageflywheels,

basedontheUSDepartmentofEnergy(DOE)energystoragedatabase[8](whichisself-reportedandresearchedanddoesnotmaintainpacewithallnewinstallations),thereare

174,000MWofenergystoragesystemsofalltypesinstalledandoperationalworldwide,with24,500MWinstalledinthe

andelectrochemicalbatteriesdeployedinBESS.Currently,

-11-

Riskassessmentofbatteryenergystoragefacilitysites

-12-

1.1.1INDUSTRIALSECTORCOMPARISON

Figure1-1isbasedondatafromOurWorldData[4]forall

ofthesectorsshown,exceptfortheBESSsector,whichwasseparatelycalculatedandaddedalongsidetheothersectors’data.Thefigureshowsthemortalityratefromaccidentsandairpollutionperunitofelectricityworldwideindifferent

sectors.Thefigureshowsfatalitiesperterawatt-hour3of

electricityproducedin2022perindustrysector.ThemortalityrateintheBESSsectorisbasedon4totalfatalitiesattributedtoBESSworldwidetodate,accordingtoadatabaserunby

UnderwritersLaboratoriesSolutions[16].Asof2023,roughly97,000MWhofelectricitystoragecapacityisinstalled

globally[17][18].Basedonthosevalues,theBESSsector’s

mortalityrateisapproximately0.074fatalitiesperterawatt-hourforLi-ionbatteryBESSfacilities.Withinthepower

generationsector,thefatalityrateperunitofenergy

(orterawatthours)forBESSsitesisconsiderablylowerper

unitofelectricityproductioncomparedtoothersourcessuchascoal,oil,ornaturalgas.However,itisworthnotingthatthedeathratesincludedinthisgraphaccountforindirectdeathsfromairpollutionaswellaswork-relatedincidentsanddirectimpactonsociety.Thedatafromupstream-relatedactivitiessuchasmining,fabrication,anddeliveryofthelithium-ion

energystoragesystemisnotavailable.Therefore,indirectimpactsforLi-ionstoragewerenotincludedaspartofthiscomparison.

DeathsperTerawatthourelectricity

30

25

20

15

10

5

0

25

18

4.6

2.8

1.3

Coal

Oil

Biomass

Gas

0.07

HydropowerLi-ionbatteryenergystorage

0.04Wind

0.03

Nuclear

0.02Solar

Energysector

FIGURE1-1

Deathsperunitofelectricityproductionbyenergysource[4]

3Aterawatt-hour(TWh)isequaltoonetrillionwattsofpowerusedforonehour.

OneTWhisequaltoonemillionMWh,roughlytheelectricityusedby80,000averageUShouseholdseachyear.

4Inourcalculations,DNVassumedthatallinstalledBESSwereutilized70%ofthetimeperyearwhichroughlyequatesto60TWhofenergyproducedfromlithium-ionbasedBESSsince2008.ThedataforthetotalcapacityofBESSinstallationsfrom2008-2020isfromRef.[18];datafrom2021-2023isfromRef.[17];2024valueswereestimatedbasedon2023data.

Riskassessmentofbatteryenergystoragefacilitysites

-13-

1.1.2VEHICLECOMPARISON

EVfiresreceivemuchpublicity,whetherthefiresresultfromcrashes,occurduringcharging,orhappenwhilethevehicleisparkedbutnotbeingcharged.AsdeploymentsofEVs

increaseexponentially,increasingfireincidentsmayerodeconfidenceinthetechnology.Ofcourse,conventional

gasolineordiesel-fueledvehiclesalsocatchfiredueto

crashes,duringrefueling,andwhileparked,butthat

technologyhasbeenaroundforwelloveracenturyandsohasbeennormalized.

DNVisnotawareofpeer-reviewedcomparisonsonrates

offireamongEVsandconventionallyfueledvehicles.One

widelyreferencedstudy[19]claimsEVshaveamuchlower

rateoffirethanconventionalvehicles,whichmaywellbetrue.

However,thestudyusesrecentsalesdatatoder

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论