




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽高三春季阶段性检测一、单项选择题:本题共8小题,每小题5分,共40分.1.答案D命题透析本题考查复数的运算.2.答案C命题透析本题考查集合的表示与运算.解析A={x|x=3n-1或x=3n+1,n∈Z}表示不能被3整除的整数,B={x|x=3n,n∈Z}表示能被3整除的整数,故A∩B=⑦.3.答案B命题透析本题考查对数函数的性质.6\,4.答案D命题透析本题考查等差数列的性质.解析因为{an}是等差数列,所以a1,a6,a11和a2,a7,a12也成等差数列,所以a1+a2,a6+a7,a11+a12成等差数5.答案B命题透析本题考查奇函数的性质.解析必要性显然成立,对于充分性,f(x)的图象可能在原点处断开,所以由f(x)在(0,+∞)上单调递增不能推出f(x)在R上单调递增.6.答案A命题透析本题考查古典概型以及条件概率的计算.解析由题意知有驾照的男员工有=40人,有驾照的女员工有=15人,设A=“该员工是男员工”,B=“该员工有驾照”,则P7.答案C命题透析本题考查函数的图象与性质.解析由已知得f,(a)>0,f(b)>0,f(C)<0,Cf,(C)<0,故排除A,B.设点P(C,f(C)),由图象可知直线OP的斜率小于曲线y=f(x)在点P处的切线斜率,即,可得f<Cf,,所以f最小.PDFShaperProfessional8.答案D命题透析本题考查抛物线与直线的位置关系.解析如图,设AF=m,BF=n,因为AF丄BF,所以|AB|=\.设点A,B在l上的射影分别为G,W,由抛物线的定义可知AG=m,iBWi=n,则,因为m2+n2≥2mn,所以2(m2+2=(m+n)2,当且仅当m=n时等号成立,故,故,即的最小值为\2.二、多项选择题:本题共3小题,每小题6分,共18分.每小题全部选对的得6分,部分选对的得部分分,有选错的9.答案ACD命题透析本题考查概率的计算、随机变量的分布列与期望.解析对于A,由题意知=k+2k+3k+4k+5k=1,解得k=,故A正确;对于=5k=,故B错误;对于D,P(X≤3)=P(X=1)+P(X=2)+P(X=3)=6k,P(X≥4)=9k,故D正确.10.答案ABD命题透析本题考查双曲线与圆的方程.解析对于A,易知F1(-2,0),F2(2,0)为E的左、右焦点,因为P,Q两点都在E的右支上,所以F1P-F2P=F1Q-F2Q,整理得F1P+F2Q=F1Q+F2P,故A正确;对于B,设P,联立{2=4,消去x可得2y2-2my+m2-2=0,则Δ=8(m2-2)>0,解得-2<m<2,故B正确;OQ2=xEQ\*jc3\*hps10\o\al(\s\up4(2),1)+xEQ\*jc3\*hps10\o\al(\s\up4(2),2)+yEQ\*jc3\*hps10\o\al(\s\up4(2),1)+yEQ\*jc3\*hps10\o\al(\s\up4(2),2)=4+2(yEQ\*jc3\*hps10\o\al(\s\up4(2),1)+yEQ\*jc3\*hps10\o\al(\s\up4(2),2))=8,故C错误;对于D,OP+OQ≤\2(OP2+OQ2)=4,故D正确.11.答案BC命题透析本题考查三角函数的图象与性质.解析当甲到达点(a,0)处时,甲运动的距离为a,则乙运动的距离为,所以C=-,b=cosa,d=对于A,g(2π)=1,故A错误;对于B,g/(a)=-sina+cos,可知当a∈[3π,时,g/(a)≥0,故g(a)在[3π,上单调递增,故B正确;对于C,令g(a)=cosa+sin=a=,故C正确;对于D,g(a)=1-2sin2+sin,因为a∈,2π],所以∈,π],则sin∈[0,\EQ\*jc3\*hps17\o\al(\s\up4(2),2)],故g(a)∈ \EQ\*jc3\*hps17\o\al(\s\up6(2),2),故D错误.三、填空题:本题共3小题,每小题5分,共15分. 命题透析本题考查平面向量的基本运算.命题透析本题考查简单几何体的相关计算.解析由已知得圆锥的高为3,体积为π(\23)2×3=2π,正三棱台的体积为××\EQ\*jc3\*hps17\o\al(\s\up4(3),4)×(12+22+1×2)=\3,设铁块的密度为P,则甲、乙对地面的压强分别为P1==P,P2=\2=P,所以=1.命题透析本题考查创新思维、二项式定理的应用..CEQ\*jc3\*hps10\o\al(\s\up4(3),9)3.CEQ\*jc3\*hps10\o\al(\s\up5(2),6)2.CEQ\*jc3\*hps10\o\al(\s\up5(3),4)3.CEQ\*jc3\*hps10\o\al(\s\up5(1),1)1,所以a6b7C6d8的系数为CEQ\*jc3\*hps10\o\al(\s\up5(3),9)CEQ\*jc3\*hps10\o\al(\s\up5(2),6)CEQ\*jc3\*hps10\o\al(\s\up5(3),4)CEQ\*jc3\*hps10\o\al(\s\up5(1),1)=5040.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.命题透析本题考查正弦定理和余弦定理的应用.解析(I)由正弦定理得a=CsinAsinC,………(3分) 因为a=1<C=\2,所以A<C,所以A=πB……(7分)所以\62-\2a+b=(\6-\2)sinA+2sinB=(\6-\2)sinA+2sin-A),(A+.………………(10分)……………(13分)16.命题透析本题考查导数的几何意义,利用导数研究函数的性质.解析(I)f,(x)=ex-e,…………………(1分)所以f,(0)=1-e,又f(0)=1,……………(2分)所以曲线y=f(x)在点(0,f(0))处的切线方程为y=(1-e)x+1.………(4分)(Ⅱ)令f,(x)=0,得x=1,当x<1时,f,(x)<0,当x>1时,f,(x)>0,所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极小值为f(1).……………(6分)因为存在x0∈(t,t+1),满足f(x0)<f(t)<f(t+1),所以f(x)在区间(t,t+1)内有极小值点,所以t<1<t+1,得0<t<1.…………………(9分)由f(t)<f(t+1),得et-et<et+1-et-e,即(e-1)et-e>0,).……………………(15分)17.命题透析本题考查空间位置关系的推理与证明、二面角的计算.解析(I)如图,连接BD,设AC∩BD=O,连接PO.根据正四棱锥的性质可知AC丄BD,PO丄平面ABCD.因为POC平面PBD,所以平面PBD丄平面ABCD,………(2分)因为AC丄BD,平面PBD∩平面ABCD=BD,所以AC丄平面PBD,又BFC平面PBD,所以AC丄BF.……………(4分)又因为BF丄AE,AE∩AC=A,所以BF丄平面AEC.…………………………(6分)(Ⅱ)因为AB=\2,所以BD=2,又正四棱锥P-ABCD的高PO=\3,所以△PBD是正三角形.连接OE,因为BF丄平面AEC,所以BF丄OE,又E是PB的中点,O是BD的中点,所以OEⅡPD,所以BF丄PD,因此F是PD的中点.………………………(7分)以O为原点,分别以直线OA,OB,OP为x,y,z轴建立空间直角坐标系Oxyz,……………(8分) 则P(0,0,\3),B(0,1,0),D(0,-1,0),C(-1,0,0),F(0,-,\EQ\*jc3\*hps17\o\al(\s\up5(3),2)).…………………(9分)因为BF丄平面AEC,所以可取平面AEC的一个法向量为m=(0,-\3,1).……(10分)设平面PCD的法向量为n=(x,y,z),因为-EQ\*jc3\*hps20\o\al(\s\up4(→),PC)=(-1,0,-\3),-=(0,-1,-\3),所以不妨取n=(\3,\3,-1).………………(13分)所以平面AEC与平面PCD夹角的余弦值为2\7………(15分18.命题透析本题考查椭圆的方程与简单几何性质,椭圆与直线的位置关系.解析(I)设C的半焦距为C(C>0).因为C的离心率为,所以整理得b=C.……………(1分)因为△PF1F2面积的最大值为1,所以b.2C=bC=1,………………… 可得b=C=1,所以a=\2,所以C的方程为+y2=1.………………… (Ⅱ)因为点P在第一象限,所以0<xP<\2.………………(5分)由(I)可知F1(-1,0),所以直线PF1的方程为,由G为△PF1F2的重心,得xB=xG=,yB=,…………………×(x+3)2△F1AB与△PF1F2的面积之比为=.………………(7分) 2×2×yP令f(x)=(0<x<\2),则f,(x)=, 当x∈(0,1)时,f,(x)<0,f(x)单调递减,当x∈(1,\2)时,f,(x)>0,f(x)单调递增,所以当x=1时,f(x)取得最小值f(1)=,即△F1AB与△PF1F2的面积之比的最小值为.………(10分)(Ⅲ)由PR=QR,可知点R在PQ的中垂线上,又P,Q,R均不在坐标轴上,所以直线PF1的斜率存在且不为0,设其方程为y=k(x+1)(k≠0).…(11分)由可得(1+2k2)x2+4k2x+2k2-2=0 2…………(12分)设PQ的中点为M,则xM==-,yM=k(xM+1)=.………………(13分)直线RM的方程为x-xM=-k(y-yM),3,RPQM1+2k2,假设△PQR的重心在x轴上,则yP+yQ+yR=0得y=-(y3,RPQM1+2k2,所以xR=xM-k(yR-yM)=--k(--=,所以R,-.………………(15分)将R的坐标代入C的方程,得2+2×(-2-2=0,整理得7k4+2=0,此方程无实数解,故△PQR的重心不可能在x轴上.…………(17分)19.命题透析本题考查计数原理与递推数列的综合应用.解析(I)显然a1=0;2阶完全随机序列只有2,1,故a2=1;3阶完全随机序列可以为2,3,1或3,1,2,故a3=2;要得到4阶完全随机序列,可先排1,有3种排法,若1排到2的位置,那就再排2,也有3种排法,剩下的两个数字只有1种排法,由分步乘法计数原理可得a4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店资产投资与经营管理合伙协议书二零二五
- 二零二五年度私人住宅装修工人安全责任合同
- 2025年度海洋资源开发横向课题执行协议
- 二零二五年度小程序游戏运营合作协议
- 2025年度电子元器件采购合同主要内容简述
- 二零二五年度购房合同定金支付及变更协议书
- 2025年度酒店员工劳动权益保障合同
- 二零二五年度绿色建筑股权协议及合伙人合作开发协议
- 2025年度美发店员工工伤事故处理劳动合同
- 空调安装工劳动合同
- 2024年全国高中数学联赛试题(及答案)
- 铸造车间整改和工资改革方案
- 哄女生消气的100句话
- 企业税务风险防控财务规划中的税法合规策略
- 煤场封闭施工方案
- 《系统集成项目管理工程师》必背100题
- 第三章-碾米工艺与设备
- 6AM2U7 Rules around us Rules and signs ppt英语教学课件
- 小学石油科普知识认识石油教学课件
- 第十三章计算机辅助药物设计讲解
- 2023年中央广播电视总台校园招聘笔试参考题库附带答案详解
评论
0/150
提交评论