吉林交通职业技术学院《海报设计课程设计》2023-2024学年第二学期期末试卷_第1页
吉林交通职业技术学院《海报设计课程设计》2023-2024学年第二学期期末试卷_第2页
吉林交通职业技术学院《海报设计课程设计》2023-2024学年第二学期期末试卷_第3页
吉林交通职业技术学院《海报设计课程设计》2023-2024学年第二学期期末试卷_第4页
吉林交通职业技术学院《海报设计课程设计》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页吉林交通职业技术学院《海报设计课程设计》

2023-2024学年第二学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像检索任务中,根据用户提供的图像或特征在数据库中查找相似的图像。假设要从一个大型图像库中找到与给定图像相似的图片,以下关于图像检索方法的描述,正确的是:()A.基于图像的颜色和纹理特征进行检索能够满足所有的检索需求B.深度学习中的卷积神经网络提取的特征在图像检索中不如手工设计的特征有效C.考虑图像的语义信息和高层特征可以提高图像检索的准确性和相关性D.图像检索的速度和效率不受数据库大小和特征维度的影响2、在计算机视觉中,图像分类是一项基础任务。假设我们有一组包含各种动物的图像数据集,需要训练一个模型来准确区分不同的动物类别。在选择图像分类模型时,以下哪种模型架构通常在处理大规模图像数据集时表现出色?()A.传统的机器学习算法,如支持向量机(SVM)B.浅层的卷积神经网络(CNN)C.深度卷积神经网络,如ResNetD.循环神经网络(RNN)3、当利用计算机视觉技术对医学影像(如X光、CT等)进行分析,辅助医生进行疾病诊断时,需要从大量的图像数据中提取有价值的特征。以下哪种特征提取方法在医学影像分析中可能具有较高的应用价值?()A.基于形状的特征提取B.基于纹理的特征提取C.基于深度学习的自动特征学习D.基于颜色的特征提取4、在计算机视觉的图像分割任务中,假设要对细胞图像进行精细分割。以下关于模型选择的考虑因素,哪一项是不准确的?()A.模型对细胞边界的捕捉能力B.模型在小样本数据上的泛化能力C.模型的训练时间和计算资源需求D.模型的知名度和在学术圈的引用次数5、当利用计算机视觉进行图像分类任务,例如区分不同种类的动物图片,为了提高模型的泛化能力和防止过拟合,以下哪种技术可能是有效的?()A.数据增强B.正则化C.模型融合D.以上都是6、在计算机视觉的行人重识别任务中,假设要在多个摄像头拍摄的画面中找到同一个行人。以下关于特征融合的方法,哪一项是不太合理的?()A.将行人的外观特征和步态特征进行融合B.简单地将不同特征进行拼接,不考虑权重分配C.根据特征的重要性为其分配不同的权重进行融合D.利用深度学习模型自动学习特征的融合方式7、假设要开发一个能够自动识别水果种类和品质的计算机视觉系统,用于水果分拣和质量评估。在获取水果图像时,可能会受到光照、角度和遮挡等因素的影响。为了提高识别的准确性和鲁棒性,以下哪种图像预处理技术可能是关键?()A.图像增强B.图像去噪C.图像归一化D.图像分割8、在计算机视觉的医学影像分析中,例如对肿瘤的检测和分割,需要高精度和可靠性。假设我们有一组磁共振成像(MRI)数据,以下哪种技术能够有效地辅助医生进行准确的诊断和治疗规划?()A.基于传统图像处理的方法B.基于深度学习的分割网络,结合多模态数据C.基于聚类和分类的方法D.基于形态学操作和阈值分割的方法9、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像10、图像去模糊是计算机视觉中的一个难题。假设一张图像由于相机抖动而产生模糊,以下哪种去模糊方法可能需要对模糊核有较为准确的估计?()A.基于深度学习的去模糊方法B.盲去卷积方法C.维纳滤波去模糊方法D.均值滤波去模糊方法11、计算机视觉在虚拟现实(VR)和增强现实(AR)中有重要作用。假设要在VR环境中实现真实感的物体交互,以下哪种技术可能对准确感知物体的位置和姿态至关重要?()A.立体视觉B.光场成像C.结构光D.运动捕捉12、计算机视觉中的图像超分辨率重建旨在提高图像的分辨率和细节。假设要将一张低分辨率的老照片重建为高分辨率的清晰图像,同时要保持图像的自然度和真实性。以下哪种图像超分辨率重建方法最为适合?()A.基于插值的方法B.基于重建的方法C.基于深度学习的方法D.基于学习字典的方法13、图像超分辨率是指从低分辨率图像生成高分辨率图像。假设我们有一张模糊的低分辨率老照片,想要将其清晰化并提高分辨率。以下哪种图像超分辨率方法能够生成更逼真的细节和更清晰的边缘?()A.基于插值的方法,如双线性插值B.基于重建的方法,如基于字典学习的方法C.基于深度学习的方法,如SRCNND.基于小波变换的方法14、在目标检测中,YOLO(YouOnlyLookOnce)算法的特点是()A.检测速度快B.检测精度高C.适用于小目标检测D.对遮挡不敏感15、在计算机视觉的车牌识别任务中,需要从车辆图像中准确提取车牌号码。假设车牌存在倾斜、变形和光照不均等问题。以下哪种车牌识别方法在应对这些挑战时表现更为出色?()A.基于字符分割的车牌识别B.基于模板匹配的车牌识别C.基于深度学习的车牌识别D.基于特征提取的车牌识别16、在计算机视觉的图像配准任务中,将不同视角或时间拍摄的图像进行对齐,以下哪种变换模型可能适用于具有较大形变的图像配准?()A.刚性变换B.仿射变换C.投影变换D.非线性变换17、在计算机视觉中,以下哪种方法常用于图像的语义分割中的多尺度特征融合?()A.特征金字塔B.空洞卷积C.注意力机制D.以上都是18、在计算机视觉的人脸识别任务中,假设要在一个大型数据库中快速准确地识别出特定人物的面部。数据库中的人脸图像可能存在表情、光照和姿态的变化。为了提高人脸识别的性能,以下哪种方法是常用且有效的?()A.提取人脸的全局特征,如整体形状和轮廓B.仅关注人脸的局部特征,如眼睛和嘴巴C.使用多模态数据,结合人脸的纹理和深度信息D.随机选择人脸特征进行匹配19、人脸识别是计算机视觉的一个重要应用。假设一个公司使用人脸识别系统进行员工考勤。以下关于人脸识别技术的描述,哪一项是错误的?()A.它可以通过提取面部特征,如眼睛、鼻子和嘴巴的形状和位置,来进行身份识别B.能够适应不同的表情、姿态和光照变化,保持较高的识别准确率C.人脸识别系统的安全性极高,不存在被欺骗或误识别的可能性D.深度学习模型在人脸识别中表现出色,大大提高了识别性能20、在计算机视觉的视频压缩中,为了在保证视觉质量的同时减少数据量,以下哪种技术可能被广泛应用?()A.运动估计和补偿B.图像分割C.特征点检测D.边缘检测21、计算机视觉在自动驾驶领域发挥着重要作用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志、车辆和行人。以下关于自动驾驶中计算机视觉的描述,哪一项是不正确的?()A.计算机视觉可以通过摄像头实时获取道路信息,为车辆的决策和控制提供依据B.它能够准确识别不同光照和天气条件下的交通对象,不受任何干扰C.深度学习算法在自动驾驶的计算机视觉中被广泛应用,用于目标检测和语义分割D.计算机视觉需要与其他传感器(如雷达、激光雷达)的数据融合,以提高感知的可靠性22、计算机视觉中的无人驾驶技术是一个综合性的应用领域。以下关于无人驾驶中的计算机视觉的说法,不正确的是()A.计算机视觉在无人驾驶中用于环境感知、目标检测、路径规划和障碍物避让等任务B.深度学习方法能够实时准确地识别道路标志、车辆和行人等物体C.无人驾驶中的计算机视觉系统已经非常成熟,能够应对各种复杂的交通场景D.恶劣天气条件和光照变化等因素仍然是无人驾驶中计算机视觉面临的挑战23、在计算机视觉的图像修复任务中,假设要修复一张有部分缺失的图像。以下关于图像修复方法的描述,正确的是:()A.基于扩散的图像修复方法能够自然地填充缺失区域,但修复速度慢B.基于样本的图像修复方法可以快速生成修复结果,但容易出现重复纹理C.深度学习中的生成对抗网络(GAN)在图像修复中无法保证修复内容与周围区域的一致性D.所有的图像修复方法都能够完美地恢复出图像缺失部分的真实内容24、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息25、计算机视觉中的场景理解需要从图像中推断出物体之间的关系和场景的语义信息。假设要理解一张室内办公室场景的图像,包括家具的布局、人员的活动等。以下哪种方法在进行场景理解时最为有效?()A.基于对象检测和分类的方法B.基于图模型的场景表示C.基于深度学习的场景解析D.基于规则推理的方法二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉在药品生产中的应用。2、(本题5分)简述图像的色彩校正方法。3、(本题5分)解释计算机视觉中的多视图几何原理。4、(本题5分)计算机视觉中如何进行桥梁健康监测?三、分析题(本大题共5个小题,共25分)1、(本题5分)以某化妆品品牌的包装设计为例,分析其如何在造型、色彩、材质等方面展现品牌的高端定位和产品特性,吸引消费者。2、(本题5分)分析某游戏的界面设计,讨论其色彩、图形、交互设计等方面如何提升玩家的游戏体验。3、(本题5分)某体育赛事的官方网站设计充满动感和竞技氛围,赛事信息及时准确。请探讨该网站在传递赛事信息、吸引观众关注、提升赛事影响力方面的策略,以及如何适应不同赛事类型和规模进行优化。4、(本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论