2024-2025学年新教材高中数学第五章统计与概率5.3.1样本空间与事件学案新人教B版必修第二册_第1页
2024-2025学年新教材高中数学第五章统计与概率5.3.1样本空间与事件学案新人教B版必修第二册_第2页
2024-2025学年新教材高中数学第五章统计与概率5.3.1样本空间与事件学案新人教B版必修第二册_第3页
2024-2025学年新教材高中数学第五章统计与概率5.3.1样本空间与事件学案新人教B版必修第二册_第4页
2024-2025学年新教材高中数学第五章统计与概率5.3.1样本空间与事件学案新人教B版必修第二册_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE15.3.1样本空间与事务考点学习目标核心素养事务了解必定现象和随机现象,了解不行能事务、必定事务及随机事务数学抽象样本空间理解样本点的定义,会求试验中的样本空间以及事务A包含的样本点的个数数学抽象、数学运算问题导学预习教材P93-P97的内容,思索以下问题:1.必定现象和随机现象是如何定义的?2.事务分为哪三类?3.样本点和样本空间是如何定义的?1.样本点与样本空间(1)必定现象与随机现象现象条件特征必定现象在肯定条件下发生的结果事先能确定的现象随机现象发生的结果事先不能确定的现象(2)样本点:随机试验中每一种可能出现的结果.(3)样本空间①定义:由全部样本点组成的集合称为样本空间.②表示:样本空间常用大写希腊字母Ω表示.2.随机事务(1)假如随机试验的样本空间为Ω,则随机事务A是Ω的一个非空真子集.而且:若试验的结果是A中的元素,则称A发生;否则,称A不发生.(2)每次试验中Ω肯定发生,从而称Ω为必定事务;又因为空集∅不包含任何样本点,因此可以认为每次试验中∅肯定不发生,从而称∅为不行能事务.(3)一般地,不行能事务、随机事务、必定事务都可简称为事务,通常用大写英文字母A,B,C,…来表示事务.因为事务肯定是样本空间的子集,从而可以用表示集合的维恩图来直观地表示事务,特殊地,只含有一个样本点的事务称为基本领件.3.随机事务的概率事务发生的可能性大小可以用该事务的概率来衡量,概率越大代表越有可能发生.事务A的概率通常用P(A)表示.不行能事务∅的概率规定为0,必定事务Ω的概率规定为1,即P(∅)=0,P(Ω)=1.对随意事务A,P(A)应当满意不等式0≤P(A)≤1.推断正误(正确的打“√”,错误的打“×”)(1)三角形的内角和为180°是必定事务.()(2)“抛掷硬币三次,三次正面对上”是不行能事务.()(3)“下次李欢的数学成果在130分以上”是随机事务.()答案:(1)√(2)×(3)√下列现象是必定现象的是()A.一天中进入某超市的顾客人数B.一顾客在超市中购买的商品数C.一颗麦穗上长着的麦粒数D.早晨太阳从东方升起解析:选D.只有D是在肯定条件下必定发生的现象,其他三个每次发生的结果不肯定相同.下列事务:①长度为3,4,5的三条线段可以构成一个直角三角形;②经过有信号灯的路口,遇上红灯;③下周六是晴天.其中,是随机事务的是()A.①② B.②③C.①③ D.②解析:选B.①是必定事务,②③是随机事务.从a,b,c,d中任取两个字母,则该试验的样本空间为Ω=________.答案:{ab,ac,ad,bc,bd,cd}样本点与样本空间连续掷3枚硬币,视察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数;(3)“恰有两枚正面对上”这一事务包含哪几个样本点?【解】(1)试验的样本空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)}.(2)样本点的总数是8.(3)“恰有两枚正面对上”包含以下3个样本点:(正,正,反),(正,反,正),(反,正,正).[变问法]在例题条件下,写出这个试验中“恰有一枚正面对上”这一事务包含的样本点.解:“恰有一枚正面对上”包含3个样本点,分别是:(正,反,反),(反,正,反),(反,反,正).eq\a\vs4\al()确定样本空间的方法(1)必需明确事务发生的条件;(2)依据题意,按肯定的次序列出问题的答案.特殊要留意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.一个盒子中装有5个完全相同的球,分别标有号码1,2,3,4,5,从中一次任取两球.(1)写出这个试验的样本空间;(2)求这个试验的样本点总数;(3)写出“取出的两球上的数字之和是6”的这一事务中所包含的样本点.解:(1)Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}.(2)样本点总数为10.(3)“取出的两球上的数字之和是6”这一事务所包含的样本点为(1,5),(2,4).事务类型的推断推断下列事务哪些是必定事务,哪些是不行能事务,哪些是随机事务.(1)“抛一石块,下落”;(2)“在标准大气压下且温度低于0℃时,冰溶化”;(3)“某人射击一次,中靶”;(4)“假如a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水分,种子能发芽”;(10)“在常温下,焊锡熔化”.【解】事务(1)(4)(6)是必定事务;事务(2)(9)(10)是不行能事务;事务(3)(5)(7)(8)是随机事务.eq\a\vs4\al()要判定某事务是何种事务,首先要看清条件,因为三种事务都是相对于肯定条件而言的.其次再看它是肯定发生,还是不肯定发生,还是肯定不发生.肯定发生的是必定事务,不肯定发生的是随机事务,肯定不发生的是不行能事务.下列事务中的随机事务为()A.若a,b,c都是实数,则a(bc)=(ab)cB.没有水和空气,人也可以生存下去C.抛掷一枚硬币,反面对上D.在标准大气压下,温度达到60℃时水沸腾解析:选C.A中的等式是实数乘法的结合律,对随意实数a,b,c是恒成立的,故A是必定事务.在没有空气和水的条件下,人是肯定不能生存下去的,故B是不行能事务.抛掷一枚硬币时,在没得到结果之前,并不知道会是正面对上还是反面对上,故C是随机事务.在标准大气压的条件下,只有温度达到100℃,水才会沸腾,当温度是60℃时,水是肯定不会沸腾的,故D是不行能事务.随机事务的概率做掷红、蓝两颗骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.(1)写出这个试验的全部可能的结果;(2)求这个试验共有多少种不同的结果;(3)写出事务“出现的点数之和大于8”包含的结果;(4)写出事务“出现的点数相同”包含的结果;(5)记“出现的点数之和大于8”为A,记“出现的点数相同”为B,从直观上推断P(A)与P(B)的大小.【解】(1)这个试验全部可能的结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)由(1)知这个试验不同的结果共有36种.(3)事务“出现的点数之和大于8”包含的结果为(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(4)事务“出现的点数相同”包含的结果为(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(5)事务A出现了10次,事务B出现了6次,故P(A)>P(B).eq\a\vs4\al()概率的性质(1)范围:任何事务A的概率P(A)∈[0,1].(2)必定事务的概率P(Ω)=1.(3)不行能事务的概率P(∅)=0.(2024·河南郑州一中期末)下列结论正确的是()A.事务A发生的概率P(A)的值满意0<P(A)<1B.若P(A)=0.999,则A为必定事务C.灯泡的合格率是99%,从一批灯泡中任取一个,是合格品的可能性是99%D.若P(A)=0.001,则A为不行能事务解析:选C.由事务发生的概率的基本性质,可知事务A的概率P(A)的值满意0≤P(A)≤1,故A错误;必定事务的概率为1,故B错误;不行能事务的概率为0,故D错误.故选C.1.下列现象:①当x是实数时,x-|x|=2;②某班一次数学测试,及格率低于75%;③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,取出的纸团是偶数;④体育彩票某期的特等奖号码.其中是随机现象的是()A.①②③ B.①③④C.②③④ D.①②④解析:选C.由随机现象的定义知②③④正确.2.下列事务中,是不行能事务的是()A.三角形的内角和为180°B.三角形中大角对大边,小角对小边C.锐角三角形中两内角和小于90°D.三角形中随意两边之和大于第三边解析:选C.锐角三角形中两内角和大于90°.3.同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事务A包含的样本点的个数是()A.3 B.4C.5 D.6解析:选D.有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个样本点.4.甲、乙两人做出拳嬉戏(锤、剪、布).(1)写出样本空间;(2)写出事务“甲赢”;(3)写出事务“平局”.解:(1)用(锤、剪)表示甲出锤,乙出剪,其他的样本点用类似方法表示,则Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤),(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.(2)记“甲赢”为事务A,则A={(锤,剪),(剪,布),(布,锤)}.(3)记“平局”为事务B,则B={(锤,锤),(剪,剪),(布,布)}.[A基础达标]1.下列现象中,是随机现象的有()①在一条马路上,交警记录某一小时通过的汽车超过300辆;②若a为整数,则a+1为整数;③放射一颗炮弹,命中目标;④检查流水线上一件产品是合格品还是次品.A.1个 B.2个C.3个 D.4个解析:选C.当a为整数时,a+1肯定为整数,是必定现象,其余3个均为随机现象.2.有下列事务:①连续掷一枚硬币两次,两次都出现正面朝上;②异性电荷相互吸引;③在标准大气压下,水在1℃结冰;④买了一注彩票就得了特等奖.其中是随机事务的有()A.①② B.①④C.①③④ D.②④解析:选B.①④是随机事务,②为必定事务,③为不行能事务.3.下列事务是必定事务的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球会沉入水底D.抛一枚硬币,正面朝上解析:选C.A是不行能事务,B是随机事务,C是必定事务,D是随机事务.4.某校高一年级要组建数学、计算机、航空模型三个爱好小组,某学生只选报其中的2个,则样本点共有()A.1个 B.2个C.3个 D.4个解析:选C.该生选报的全部可能状况是:(数学和计算机),(数学和航空模型),(计算机和航空模型),所以样本点有3个.5.“连续抛掷两枚质地匀称的骰子,记录朝上的点数”,该试验的结果共有()A.6种 B.12种C.24种 D.36种解析:选D.试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种.6.写出下列试验的样本空间:(1)甲、乙两队进行一场足球赛,视察甲队竞赛结果(包括平局)________;(2)从含有6件次品的50件产品中任取4件,视察其中次品数________.解析:(1)甲、乙两队进行一场足球赛,视察甲队竞赛结果(包括平局)可能有三种:胜,平,负,所以Ω={胜,平,负}.(2)从含有6件次品的50件产品中任取4件,视察其中次品数可能为0,1,2,3,4,所以Ω={0,1,2,3,4}.答案:(1)Ω={胜,平,负}(2)Ω={0,1,2,3,4}7.投掷两枚骰子,点数之和为8所含的样本点有______种.解析:样本点为(2,6),(3,5),(4,4),(5,3),(6,2),共5种.答案:58.从1,2,3,…,10中随意选一个数,这个试验的样本空间为________,“它是偶数”这一事务包含的样本点个数为________.解析:从1,2,3,…,10中随意选一个数,所得到的数可能是从1到10中的随意一个数,所以这个试验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},“它是偶数”这一事务包含的样本点有5个,分别为2,4,6,8,10.答案:Ω={1,2,3,4,5,6,7,8,9,10}59.一个盒子中放有5个完全相同的小球,其上分别标有号码1,2,3,4,5.从中任取一个,登记号数后放回,再取出1个,登记号数后放回,按依次记录为(x,y),试写出“所得两球的和为6”所包含的样本点.解:由图可直观地看出,“所得两球的和为6”包含以下5个样本点:(1,5),(2,4),(3,3),(4,2),(5,1).10.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.解:(1)结果:红球,白球;红球,黑球;白球,黑球.(2)结果:1-3=-2,3-1=2,1-6=-5,3-6=-3,1-10=-9,3-10=-7,6-1=5,10-1=9,6-3=3,10-3=7,6-10=-4,10-6=4.即试验的结果为:-2,2,-5,-3,-9,-7,5,9,3,7,-4,4.[B实力提升]11.抛掷一颗骰子,视察骰子出现的点数,若“出现2点”这个事务发生,则下列事务发生的是()A.“出现奇数点” B.“出现偶数点”C.“点数大于3” D.“点数是3的倍数”解析:选B.“出现2点”这个事务发生,因为2为偶数,故“出现偶数点”这一事务发生.12.下列现象是必定现象的是()A.某路口单位时间内通过的车辆数B.n边形的内角和为(n-2)·180°C.某同学竞选学生会主席胜利D.一名篮球运动员每场竞赛所得的分数解析:选B.A,C,D选项为随机现象,B选项为必定现象.13.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前能首次摸出红球,则k的最小值为________.解析:至少需摸完黑球和白球共15个.答案:1614.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论