薄板弯曲课件_第1页
薄板弯曲课件_第2页
薄板弯曲课件_第3页
薄板弯曲课件_第4页
薄板弯曲课件_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

薄板弯曲*SheetBendingSummarizationSheetisdifferentfromthickboard。Generally,iftheratioofthethicknessoftheboardandtheminimaldimensionoftheboardfacesatisfies:Wecalltheboardsheet.

Choosetheordinateoriginasapointofthemiddleplane,andaxesofxandyinthemiddleplane,zperpendiculartoit,whichareshowninfig..

Wecalltheplanehalvesthethicknessoftheboardmiddleplane.*薄板弯曲概述薄板区别于厚板。通常情况下,板的厚度t与板面的最小尺寸b的比值满足如下条件:则称为薄板。

将坐标原点取于中面内的一点,x和y轴在中面内,z垂直轴向下,如图所示。

我们把平分板厚度的平面称为中面。*

Whensheetacceptscommonload,wealwaysdividetheloadintotwocomponents.Oneistransverseload,whichisperpendiculartomiddleplane,oneislongitudinalload,whichactsinmiddleplane.Forthelatter,weassumeitsdistributingisevenalongthethicknessofthesheet,andtreatitastheplanestressproblem.Inthischapter,wejustdiscussthestress、strainanddisplacementwhensheetisbentbecauseoftransverseload.SheetBending*

当薄板受有一般载荷时,总可以把每一个载荷分解为两个分量,一个是垂直于中面的横向载荷,另一个是作用于中面之内的纵向载荷。对于纵向载荷,可认为它沿薄板厚度均匀分布,按平面应力问题进行计算。本章只讨论由于横向载荷使薄板发生小挠度弯曲所引起的应力、应变和位移。薄板弯曲*§12-1BasicHypothesis

Forsmallbendingproblemofsheet,wegenerallyadopttheseassumptions:(1)fixityoftheboardthicknessNamely:anynormalwhichisperpendiculartomiddleplanehasthesamebending.(2)fixityofnormalofthemiddleplane

Thenormalstrainperpendiculartomiddleplaneisverysmall,thuswecanignoreit.Namely.Fromgeometricequations,wehave,thusweget:SheetBending*§12-1基本假设

薄板小挠度弯曲问题,通常采用如下假设:(1)板厚不变假设即:在垂直于中面的任一条法线上,各点都具有相同的挠度。(2)中面法线保持不变假设

垂直于中面方向的正应变很小,可以忽略不计。即,由几何方程得,从而有:薄板弯曲*

Thebeelinewhichisperpendiculartomiddleplanebeforedeformationisstillabeelineafterdeformation,andisstillperpendiculartothebentmiddleplane.Namely:(3)theboardsurfaceisneutrosphereNamely

Fromthegeometricfunctions:(4)thestresshasverysmalleffectondeformation,thuscanbeignored.Scilicetwethink:SheetBending*

在变形前垂直于中面的直线,变形后仍为直线,并垂直于弯曲后的中面。即(3)中面为中性层假设即由几何方程得(4)应力对变形的影响很小,可以略去不计。亦即认为薄板弯曲*§12-2BasicEquations

Solvingsheetbendingproblemintermsofdisplacement.Choosethesheetbendingasthebasicunknownquantity,andexpresstheotherphysicalquantitieswith.(1)GeometricFunction

FetchasmallrectangleABCDonthemiddleplane,asshowninfig..Itssidelengthsaredx

anddy.

Underactionoftheload,therectangleisbentto

flexuralplaneA’B’C’D’。supposethebendingatpointAis,theobliquitiesofstretchflexuralplanealongdirectionxandyareand.SheetBending*§12-2基本方程

按位移求解薄板弯曲问题。取薄板挠度为基本未知量,把所有其它物理量都用来表示。(1)几何方程

在薄板的中面上取一微小矩形ABCD如图所示。它的边长为dx和dy,载荷作用后,弯成曲面A’B’C’D’。设A点的挠度为,弹性曲面沿x和y方向的倾角分别为和,则薄板弯曲*ThebendingatpointBisThebendingatpointDis

FromandweknowOrcanbewrittenasAfterintegralbyz,andusing

,wegetThenthestraincomponentscanbeexpressedbyasSheetBending*B点的挠度为D点的挠度为

由和可知或写成对z进行积分,并利用,得于是应变分量用表示为:薄板弯曲*

Undersmalldeformation,becauseofweenybending,thecurvatureofstretchflexuralplanealongthecoordinatedirectioncanapproximativelybedenotedbybending:Thusthestraincomponentscanalsobewrittenas:SheetBending*

小变形下,由于挠度是微小的,弹性曲面在坐标方向的曲率可近似地用挠度表示为:所以应变分量又可写成薄板弯曲*(2)PhysicalFunctions

Ignoringthestraincausedby,physicalfunctionsbecome:Expressthestresscomponentswithstraincomponents,wehave:SheetBending*薄板弯曲(2)物理方程

不计所引起的应变,物理方程为:把应力分量用应变分量表示,得:*(3)DifferentialEquationforStretchFlexuralPlane

Ignoringbodyforce,fromthefirsttwoformulasofequilibriumequations,weget:

Theseformulasindicate:themainstresscomponentshavelineardistributingalongboardthickness.Expressstresscomponentswithbending,wehaveSheetBending*薄板弯曲(3)弹性曲面微分方程

在不计体力的情况下,由平衡方程的前二式得:

上式说明,主要的应力分量沿板的厚度线性分布。将应力分量用挠度表示,得:*

Substitutephysicalfunctionswhichstresscomponentsaredenotedbybendingintotheaboveformulasandcancelterms,weget

Becausethebendingdoesn’tchangealongzaxis,andtheboundaryconditionsontopsurfaceandundersurfaceofsheetare:SheetBending*薄板弯曲

将应力分量用挠度表示的物理方程代入上式,并化简得:

由于挠度不随z变化,且薄板在上下面的边界条件为:*Integratingtheabovetwoformulasonz,weget:Fromthethirdformulaofdifferentialequationsofequilibrium,weget:SubstitutingintotheexpressionwhicharedenotedbyBending,andcancelingterms,weget(1)SheetBending*薄板弯曲将前面二式对z进行积分,得:再由平衡微分方程第三式,得:将用挠度表达式代入,并化简得:(1)*Becausethebendingdoesn’tchangealongzaxis,andwehavetheboundarycondition:Integratingformula(1)onz,weget:Supposingtheloadactsonperunitareaontopsurfaceofsheetisq(includingtransversesurfaceforceandtransversebodyforce),andtheboundaryconditiononboardtopsurfaceisSubstitutetheexpressionofintotheaboveformula,wegetthedifferentialequation:SheetBending*薄板弯曲由于挠度不随z变化,且薄板有边界条件:将(1)式对z积分,得:

设在薄板顶面上每单位面积作用的载荷q(包括横向面力和横向体力),板上面的边界条件为:将的表达式代入该边界条件,得薄板挠曲微分方程:*whereWecallDbendrigidityofsheet.Thesheetbendingdifferentialequationisalsocalledstretchflexuralplanedifferentialequation,whichisthebasicdifferentialequationofsheetbendingproblems.SheetBending*薄板弯曲其中称为薄板的弯曲刚度。

薄板挠曲微分方程也称为薄板的弹性曲面微分方程,它是薄板弯曲问题的基本微分方程。*§12-3

InternalForceofCrossSection

Fetchasmallhexahedronatthecrosssectionofthesheet.Itsthreesides’lengtharerespectively,asshowninfig..Atthecrosssectionwhichisperpendiculartoxaxis,therearenormalstressandshearstress.Becausethesumofandequalstozeroalongtheboardthickness,theycanonlybesynthesizedtobendingmomentandtwistingmoment;whilecanonlybesynthesizedtotransverseshearingforce.

Obviously,atthesectionperpendiculartoxaxis,thevaluesofperunitwidthare:SheetBending*薄板弯曲§12-3横截面上的内力

在薄板横截面上取一微分六面体,其三边的长度分别为,如图所示。在垂直于x轴的横截面上,作用着正应力和剪应力。由于和在板厚上的总和为零,只能分别合成为弯矩和扭矩;而只能合成横向剪力。

显然,在垂直于x轴的横截面上,每单位宽度之值如下:*SimilarlySheetBending*薄板弯曲同理*

Substitutingintotheexpressionbetweenstresscomponentsandbending,andintegrating,weget

Theaboveformulasarecalledelasticityequationsbetweeninteriorforceanddeformationofsheetbendingproblems.SheetBending*薄板弯曲将上节给出的应力分量与挠度之间关系代入,并积分得:上式称为薄板弯曲问题中内力与变形之间的弹性方程。*

Accordingtotheexpressionbetweenstresscomponentsandbending,andthedifferentialequationsandtheelasticityequations,canceling,wegettherelationsamongstresscomponents,bendingmoment,twistingmoment,load:SheetBending*薄板弯曲

利用应力分量与挠度之间的关系、薄板挠曲微分方程以及内力与形变之间的弹性方程,消去,可以给出各应力分量与弯矩、扭矩、剪力、载荷之间的关系。*

Obviously,alongthesheetthickness,themax.ofstresscomponentsexistsattheboardsurface,themax.ofandexistatthemiddleplane,whilethemax.ofexistsattheloadactingplane.Moreover,amongthestresscomponentscausedbycertainload,havethebiggernumericalvalue,thusitisthemainstress;andhavetherelativelysmallernumericalvalues,theyarethesecondarystresses;extrusionstresshasthesmallestnumericalvalue,itisthemostunimportantstress.Thus,whenwecalculatetheinteriorforceofsheet,wemainlycalculatebendingmomentandtwistingmoment.SheetBending*薄板弯曲

显然,沿着薄板的厚度,应力分量的最大值发生在板面,和的最大值发生在中面,而之最大值发生在载荷作用面。并且,一定载荷引起的应力分量中,在数值上较大,因而是主要应力;及数值较小,是次要的应力;挤压应力在数值上最小,是更次要的应力。因此,在计算薄板的内力时,主要是计算弯矩和扭矩。*

§12-4BoundaryConditionofSheetTaketherectangleasshowninfig.forexample.1TheFixedSideSupposingOAisthefixedsupportingboundary,atwhichthebendingandthenormalslopeofstretchplaneequaltozero.namely:2TheSimpleSupportingSide

SupposingOCisthesimplesupposingboundary,atwhichthebendingandbendingmomentMySheetBending*薄板弯曲§12-4薄板的边界条件以图示矩形板为例:1固定边

假定OA

边是固支边界,则边界处的挠度和曲面的法向斜率等于零。即:2简支边

假设OC

边是简支边界,则边界处的挠度和弯矩My*equaltozero.

Namely:fromEvenatOCside:namelyThentheboundaryconditionsofsimplesupposingsideOCcanbewrittenas:SheetBending*薄板弯曲等于零。即:由于且在OC上即则简支边OC

边界条件可写成:*3TheFreeSide

CBsideisthefreeboundary,alongwhichthebendingmoment,twistingmomentandtransverseshearingstressequaltozero,namely:Becausethetwistingmomentcanbeswitchedtoequivalentshearingforce,thesecondandthethirdconditionscanbeunitedinto:SheetBending*薄板弯曲3自由边

板边CB为自由边界,则沿该边的弯矩、扭矩和横向剪应力都为零,即:由于扭矩可以变换为等效的剪力,故第二及第三个条件可合并为:*

SubstitutingintotheexpressionsamongMx、Qx、Mxyand

wegettheboundaryconditionsoffreeboundaryCB:SheetBending*薄板弯曲将Mx、Qx、Mxy与的关系代入,得自有边界CB

的边界条件为:*

§12-5

SolutionofSheetBendingunderRectangularCoordinate

Whensolvingsheetbendingproblemsintermsofdisplacement,wealwaysadopthalfconversesolution.Firstweenactaexpressionwhichcoefficientisunderconfirmforsheetbending;thenfromdifferentialfunctionandboundaryconditions,weconfirmthecoefficient;atlast,fromtheexpressionbetweenthebendingandstresscomponents,wegetthestresscomponents.Example1Trytoseekthemaximalbendingandmaximalbendingmomentofthefixedellipticsheetwhichisunderevendistributingloadq.Solution:undercoordinateasshowninfig.,theboundaryfunctionofellipticsheetisSheetBending*

薄板弯曲§12-5薄板弯曲的直角坐标求解

用位移法求解薄板弯曲问题,通常采用半逆解法。首先设定具有待定系数的薄板挠度的表达式;其次利用薄板曲面微分方程和边界条件,确定待定常数;最后由挠度与应力分量的关系,求得应力分量。例1试求边界固定的椭圆形薄板在承受均布载荷q

后的最大挠度和最大弯矩。解:在图示坐标下,椭圆薄板的边界方程为:*

Enactingtheexpressionofbendingis:WhereCisaconstant.Supposingnistheoutsidenormalofsheetboundary,thenatthesheetboundary,wehaveNoticethatObviouslytheexpressionofbendingsatisfiesthefixedboundarycondition.SheetBending*薄板弯曲设挠度的表达式为:其中C为常数。设n为薄板边界外法线,则在薄板的边界上应有:注意到显然所设挠度的表达式满足固定边界条件。*Substitutingtheexpressionofbendingintothedifferentialequation:Weget:thusTheinteriorforceSheetBending*薄板弯曲将挠度的表达式代入弹性曲面微分方程得:从而内力*

Themaximal

deflectionis:Themaximalflexuraltorqueis(supposea>b):whereSheetBending*薄板弯曲最大挠度为:最大弯矩为(设a>b):其中*

Example2

Trytosolvethemaximal

deflectionofrectangularsheet,whichisquadrangularfreely-supportedandbeareduniformload.Solution:selectthecoordinatesystemasthefigureshownAssumingthusattheboundarywherex=0andx=a,theboundaryconditions

issatisfiednaturally.SubstitutingtheexpressionofintothedifferentialequationofelasticcurvedfaceSheetBending*薄板弯曲例2、试求图示四边简支,承受均布载荷的矩形薄板之最大挠度。解:取图示坐标系设则在x=0及x=a边界上,边界条件自然满足。将的表达式代入弹性曲面微分方程*

yieldsExpandingbyFourierserieswheremisevennumbermisoddnumberthusChoosingtheparticularsolutionofdifferentialequationyields:SheetBending*

薄板弯曲得将展为傅立叶级数其中m为偶数m为奇数则取微分方程的特解为:*

andnoticingthedeflectionisevenfunctionofy,thusgeneralsolutionofinhomogeneouslinearordinarydifferentialequationis:yieldsUsingtheboundaryconditions(symmetricalcharacteristic)At

SheetBending*薄板弯曲并注意到挠度是y

的偶函数,则非齐次线性常微分方程的一般解为:利用边界条件(已用对称性)处,得*

Theexpressionofdeflectiongives:ifa=b,thusItisobviousthatwecanachievehighprecisiononlybychoosingtwoterminseries.SheetBending*薄板弯曲挠度的表达式:若a=b,则可见,在级数中仅取两项,就可以达到较高的精度。*

§12-6

AxisymmetricBendingofCircularSheetWhensolvingtheproblemsofbendingofcircularsheet,itwillbemoreconveniencetochoosepolarcoordinates.Ifthetransverseloadofcircularsheetisaboutzaxissymmetry

(axiszisverticaltosheetandtowardsunderside),thusthedisplacementofelasticsheetisalsoaboutzaxissymmetry

,i.e.isonlythefunctionofranddon’tchangeaccordingto.1.DifferentialEquationofElasticCurvedFaceReferringtothedifferentialequationofelasticcurvedfaceinrectangularcoordinate.Inpolarcoordinate,whenitistheaxisymmetricbendofcircularsheet,differentialequationofelasticcurvedfacecanbewrittenas:orSheetBending*

薄板弯曲§12-6圆形薄板的轴对称弯曲

求解圆板弯曲问题时,采用极坐标较方便。如果圆形薄板所受的横向载荷是绕z轴对称的(z轴垂直板面向下),则该弹性薄板的位移也将是绕z轴对称的,即只是r

的函数,不随而变。一、弹性曲面微分方程

参照直角坐标下的弹性曲面微分方程。极坐标下,圆形薄板轴对称弯曲时,曲面微分方程可写成:或*

2.InternalForceexpandingyields:sothegeneralsolutionofdifferentialequationiswhereisaarbitraryparticularsolution.

Fromthesheet,takeoutadifferentialcell,asthefigureshown.Inthecross-sectionwhererisconstant,momentofflexionandtransverseshearareMr

and

respectively;Inthecross-sectionwhereisconstant,theyareand.Becauseitisaxisymmetricproblem,thereisnotmomentoftorsion.SheetBending*

薄板弯曲二、内力展开后得:该微分方程的通解为其中是任意一个特解。

从薄板内取出一个微分单元体,图示。在r为常量的横截面上,弯矩和横向剪力分别为Mr

和;在为常量的横截面上,则为和。由于是轴对称问题,故没有扭矩。*

Evolvexaxisandyaxistothedirectionofrandthedirectionofofthisdifferentialcellrespectively,andusingcoordinatetransformationformula,wehave:SheetBending*

薄板弯曲

把x轴和y轴分别转到这个微分单元体的r和方向,则利用坐标转换公式,有:*

3.StressComponentUsingcoordinatetransformationformula,similarlygives:UsinginternalforcetodenotestresscomponentgivesSheetBending*

薄板弯曲三、应力分量利用坐标转换公式,同理有:将应力分量用内力表示有:*Example3

Givensolidcircularsheet,radiusisa,circumferenceisfixedanditisunderuniformloadandconcentratedforcepwhereitisincentreofcircle.Solution:Accordingtotheknowncondition,thisisaxisymmetricbendofCircularSheet,lineofdeflectionfunctionisspecialsolutioniswefindgeneralsolutionisFortheflexivityofcenterofsolidcircularsheet,weknow

Fromthesheet,takeoutasmallsheetwhoseradiusisr,fortheequilibriumconditionofzdirectiongives

SheetBending*薄板弯曲例3、半径为a的实心圆板,周边固支,受均布载荷及圆心处的集中力P作用,求挠度。解:由题意知,本题为圆板轴对称弯曲,挠曲线方程为:取特解知通解为由实心圆板中心处的挠度应有界知:从板中取出半径为r的部分圆板,由z方向的平衡条件给出*soFurthermorewehavesoFor

yieldsforyieldsSothedeflectionofsheetisSheetBending*薄板弯曲故而又有故由得由得故板的挠度*§12-7SolutionoftheDisplacementofSheetbyCalculusofVariationWhensheetisatbendingofsmalldeflection,ispaucity,whichcanbeomitted.SodeformationenergyofelasticsheetisUsingdeflectiontodenote:SheetBending*薄板弯曲§12-7变分法求薄板的位移

薄板小挠度弯曲时,为微量,可略去不计。此时弹性薄板的变形能:用挠度表示:*

whereAistheareaofsheet.Toarbitraryshapesheetwhoseedgesarefixedandpolygon(notholeinthesheet)whereattheboundaryofsheet,forintegrationbypartsformulasyields:Tofixedsheet,i.e.Torectangularsheetwherealongtheboundary,alwayshaveorthusSheetBending*

薄板弯曲其中A为薄板面积。

对于板边固定的任意形状板,以及板边界处的多边形(板中无孔洞),由分步积分公式得:对于固定板,即对于沿板边的矩形板,总有或因此*sodeformationenergyofelasticsheetissimplifiedasExample4Evaluatethedeflectionofsimplysupportedrectangularsheet,thatisunderuniformload.Solution:UsingRitzmethod.Thedeflectionofplateistrigonometricseriesasfollows:

Itisobvious,everytermofthisseriesissatisfiedwiththeboundaryconditionsofquadrilateralsimplysupported.Theelasticdeformationenergyofplateis:SheetBending*薄板弯曲即弹性板的变形能简化为:例4求四边简支矩形板在均布载荷作用下的挠度。解:用里兹法。取板的挠度为如下重三角级数显然,该级数的每一项都满足四边简支的边界条件。板的弹性变形能:*

Undertheuniformload,potentialenergyVofexternalforcegives

Totalpotentialenergy:FortheconditionsofⅡachievingtheextremevalue,yields(m,nareodd)SheetBending*

薄板弯曲在均布载荷作用下,外力势能V为总位能:由Ⅱ取极值的条件得出:(m,n均为奇数)*

thuswegetso(m,nareodd)(morniseven)SheetBending*

薄板弯曲由此得出故(m,n均为奇数)(m或n为偶数时)*Exercise12.1

Givenrectangularsheet,OAisfixed,OCissimplysupported,ABandBCarefree.AngularpointBissupportedbychainbar,theloadappliedtotheedgesofsheetisasthefigureshown.Trytousedeflectiontodenotetheboundaryconditionoftheedgesofsheet.xyzM0qoACBabSolution:(1)OAedge(2)OCedgethelatterequationisdenotedbydeflection,givesSheetBending*薄板弯曲练习12.1

矩形薄板具有固定边OA,简支边OC及自由边AB和BC,角点B处有链杆支承,板边所受荷载如图所示。试将板边的边界条件用挠度表示。xyzM0qoACBab解:(1)OA边(2)OC边后一式用挠度表示为*(3)ABedgeusedeflectiontodenote,gives

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论